cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A179047 Decimal expansion of 9*sqrt(3)/4, the area of an equilateral triangle of side length 3.

Original entry on oeis.org

3, 8, 9, 7, 1, 1, 4, 3, 1, 7, 0, 2, 9, 9, 7, 3, 9, 1, 0, 4, 3, 6, 7, 5, 4, 2, 6, 8, 3, 8, 8, 2, 1, 2, 8, 2, 5, 6, 2, 1, 3, 1, 1, 8, 2, 1, 0, 7, 3, 3, 5, 6, 4, 1, 3, 1, 2, 5, 5, 6, 5, 7, 0, 3, 7, 6, 6, 8, 4, 9, 2, 8, 8, 0, 4, 4, 8, 0, 0, 0, 8, 3, 4, 3, 2, 5, 7, 8, 9, 2, 0, 2, 0, 3, 8, 0, 9, 2, 9, 5, 2, 7, 0, 1, 5
Offset: 1

Views

Author

Keywords

Examples

			3.89711431702997391043675426838821282562131182107335641312556570376684...
		

Crossrefs

Programs

  • Mathematica
    a=b=c=3;area=Sqrt[(a+b-c)*(a-b+c)*(-a+b+c)*(a+b+c)]/4;RealDigits[N[area,200]]
    RealDigits[9 Sqrt[3]/4,10,120][[1]] (* Harvey P. Dale, Apr 27 2025 *)

A179050 Decimal expansion of 5/(2*sqrt(5+2*sqrt(5))), area of regular pentagram with base edge length 1.

Original entry on oeis.org

8, 1, 2, 2, 9, 9, 2, 4, 0, 5, 8, 2, 2, 6, 5, 8, 1, 5, 3, 8, 9, 6, 7, 8, 5, 3, 0, 5, 3, 7, 8, 3, 6, 1, 6, 2, 3, 8, 7, 2, 5, 8, 6, 7, 8, 8, 0, 3, 6, 8, 7, 7, 5, 0, 7, 6, 9, 5, 1, 1, 7, 9, 7, 8, 4, 1, 6, 8, 2, 2, 5, 2, 4, 0, 1, 8, 6, 2, 3, 7, 0, 8, 0, 6, 7, 1, 9, 3, 3, 8, 6, 1, 7, 4, 1, 2, 6, 2, 6, 2, 0, 4, 2, 5, 9
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 4: the smaller positive root of 16x^4 - 200x^2 + 125. - Charles R Greathouse IV, Dec 03 2012

Examples

			0.81229924058226581538967853053783616238725867880368775076951179784168...
		

Crossrefs

Programs

  • Mathematica
    a=1;area=5/(2*Sqrt[5+2*Sqrt[5]]);RealDigits[N[area,20]]
  • PARI
    5/sqrt(20+8*sqrt(5)) \\ Charles R Greathouse IV, Dec 03 2012

Extensions

Offset corrected, keyword:cons inserted by R. J. Mathar, Jun 28 2010
Name corrected by Charles R Greathouse IV, Dec 03 2012

A384142 Decimal expansion of the volume of a gyroelongated square bipyramid with unit edge.

Original entry on oeis.org

1, 4, 2, 8, 4, 0, 4, 5, 0, 2, 6, 2, 7, 7, 4, 8, 4, 0, 0, 5, 2, 7, 1, 4, 6, 5, 4, 9, 0, 7, 8, 8, 6, 7, 9, 2, 7, 9, 8, 0, 9, 0, 4, 1, 6, 4, 1, 8, 4, 7, 7, 8, 1, 6, 9, 2, 7, 4, 0, 4, 4, 7, 1, 1, 5, 5, 3, 3, 4, 9, 5, 5, 2, 1, 9, 8, 9, 4, 2, 8, 9, 2, 7, 8, 3, 2, 7, 2, 2, 9
Offset: 1

Views

Author

Paolo Xausa, May 22 2025

Keywords

Comments

The gyroelongated square bipyramid is Johnson solid J_17.

Examples

			1.428404502627748400527146549078867927980904164...
		

Crossrefs

Cf. A010502 (surface area).

Programs

  • Mathematica
    First[RealDigits[(Sqrt[2] + Sqrt[4 + Sqrt[18]])/3, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J17", "Volume"], 10, 100]]

Formula

Equals (sqrt(2) + sqrt(4 + 3*sqrt(2)))/3 = (A002193 + sqrt(4 + A010474))/3.
Equals the largest real root of 81*x^4 - 108*x^2 - 72*x-14.

A386461 Decimal expansion of the surface area of a biaugmented truncated cube with unit edges.

Original entry on oeis.org

3, 6, 2, 4, 1, 9, 1, 1, 7, 2, 9, 2, 6, 0, 2, 6, 9, 5, 6, 4, 5, 2, 3, 2, 9, 5, 1, 5, 9, 7, 0, 1, 0, 7, 4, 0, 9, 6, 3, 2, 8, 5, 9, 6, 0, 1, 8, 2, 5, 7, 1, 0, 7, 0, 9, 7, 6, 3, 6, 6, 6, 5, 8, 2, 1, 7, 3, 3, 5, 9, 1, 8, 9, 5, 3, 3, 2, 0, 5, 6, 4, 5, 9, 1, 2, 7, 6, 8, 5, 0
Offset: 2

Views

Author

Paolo Xausa, Jul 23 2025

Keywords

Comments

The biaugmented truncated cube is Johnson solid J_67.

Examples

			36.241911729260269564523295159701074096328596018257...
		

Crossrefs

Cf. A010524 (volume - 9).

Programs

  • Mathematica
    First[RealDigits[18 + 8*Sqrt[2] + Sqrt[48], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J67", "SurfaceArea"], 10, 100]]

Formula

Equals 2*(9 + 4*sqrt(2) + 2*sqrt(3)) = 2*(9 + A010487 + A010469) = 18 + A377342 + A010502.
Equals the largest root of x^4 - 72*x^3 + 1592*x^2 - 10656*x - 2672.

A179048 Decimal expansion of 25*sqrt(3)/4, the area of the equilateral triangle of side 5.

Original entry on oeis.org

1, 0, 8, 2, 5, 3, 1, 7, 5, 4, 7, 3, 0, 5, 4, 8, 3, 0, 8, 4, 5, 4, 6, 5, 3, 9, 6, 3, 4, 4, 1, 1, 7, 0, 2, 2, 9, 3, 3, 9, 2, 5, 3, 2, 8, 3, 6, 3, 1, 4, 8, 7, 8, 9, 2, 5, 3, 4, 8, 7, 9, 3, 6, 2, 1, 5, 7, 4, 5, 8, 1, 3, 5, 5, 6, 8, 0, 0, 0, 0, 2, 3, 1, 7, 5, 7, 1, 6, 3, 6, 6, 7, 2, 3, 2, 8, 0, 3, 5, 9, 7, 9, 7, 2, 6
Offset: 2

Views

Author

Keywords

Examples

			10.825317547305483084546539634411702293392532836314878925348793621574581355680..
		

Crossrefs

Programs

  • Mathematica
    a=b=c=5;area=Sqrt[(a+b-c)*(a-b+c)*(-a+b+c)*(a+b+c)]/4;RealDigits[N[area,200]]
    RealDigits[(25*Sqrt[3])/4,10,120][[1]] (* Harvey P. Dale, May 30 2018 *)
  • PARI
    25*sqrt(3)/4 \\ Charles R Greathouse IV, Jun 30 2011

Formula

Equals 25*A002194/4.

Extensions

Offset corrected, keyword:cons inserted - R. J. Mathar, Jun 28 2010

A354128 Decimal expansion of 7 - 4*sqrt(3).

Original entry on oeis.org

0, 7, 1, 7, 9, 6, 7, 6, 9, 7, 2, 4, 4, 9, 0, 8, 2, 5, 8, 9, 0, 2, 1, 4, 6, 3, 3, 9, 7, 6, 5, 1, 0, 5, 3, 2, 2, 2, 8, 7, 7, 8, 9, 8, 4, 7, 5, 8, 4, 7, 7, 4, 8, 7, 7, 7, 6, 7, 7, 2, 0, 8, 2, 1, 9, 2, 2, 6, 7, 9, 3, 2, 3, 6, 4, 7, 9, 9, 8, 5, 1, 6, 7, 5, 4, 1, 5, 2, 5, 2, 9, 7, 1
Offset: 0

Views

Author

Stefano Spezia, May 18 2022

Keywords

Comments

The smallest root of x^2 - 14*x + 1 = 0.

Examples

			0.07179676972449082589021463397651...
		

Crossrefs

Cf. A002194, A010502, A019913 (square root), A354129 (multiplicative inverse).

Programs

  • Mathematica
    First[RealDigits[N[7-4Sqrt[3],92]]]

Formula

Equals (2 - sqrt(3))^2 = A019913^2. - Jianing Song, May 27 2022

A381690 Decimal expansion of the isoperimetric quotient of a snub cube (snub cuboctahedron).

Original entry on oeis.org

8, 9, 9, 1, 8, 0, 5, 0, 7, 3, 4, 0, 6, 2, 3, 7, 6, 6, 8, 6, 9, 3, 2, 4, 0, 2, 0, 4, 6, 0, 2, 0, 0, 2, 4, 9, 2, 1, 0, 9, 7, 1, 0, 9, 0, 5, 0, 1, 9, 3, 9, 6, 0, 7, 7, 2, 9, 6, 2, 0, 3, 0, 9, 0, 7, 7, 0, 8, 7, 6, 9, 5, 6, 2, 2, 2, 4, 7, 3, 4, 2, 3, 5, 2, 5, 4, 4, 9, 5, 1
Offset: 0

Views

Author

Paolo Xausa, Mar 06 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, references and links, see A381684.

Examples

			0.8991805073406237668693240204602002492109710905019...
		

Crossrefs

Cf. A377602 (surface area), A377603 (volume).

Programs

  • Mathematica
    First[RealDigits[Pi/(3 + Sqrt[48])^3*Root[4*#^3 - 1128*#^2 + 2154*# - 6241 &, 1], 10, 100]]

Formula

Equals 36*Pi*A377603^2/(A377602^3).
Equals (Pi/((3 + 4*sqrt(3))^3))*r = (A000796/((3 + A010502)^3))*r, where r is the real root of 4*x^3 - 1128*x^2 + 2154*x - 6241.
Previous Showing 11-17 of 17 results.