A361527
Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] having exactly k strongly connected components all of which are simple cycles, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 2, 21, 25, 0, 6, 213, 774, 543, 0, 24, 3470, 30275, 59830, 29281, 0, 120, 95982, 1847265, 7757355, 10110735, 3781503, 0, 720, 4578588, 190855000, 1522899105, 3944546095, 3767987307, 1138779265
Offset: 0
1;
0, 1;
0, 1, 3;
0, 2, 21, 25;
0, 6, 213, 774, 543;
0, 24,3470, 30275, 59830, 29281;
...
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
- R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
- Eric Weisstein's World of Mathematics, Simple Directed Graph
- Wikipedia, Strongly connected component
-
nn = 7;
a[x_] := Log[1/(1 - x)];
begfa =Total[CoefficientList[ Series[1/(Total[ CoefficientList[Series[ Exp[-u *a[x]], {x, 0, nn}], x]* Table[z^n/(2^Binomial[n, 2]), {n, 0, nn}]]), {z, 0, nn}], z]*Table[z^n 2^Binomial[n, 2], {n, 0, nn}]];
Table[Take[(Range[0, nn]! CoefficientList[begfa, {z, u}])[[i]],i], {i, 1, nn + 1}] // Grid
A370385
Triangular array read by rows. T(n,k) is the number of binary relations R on [n] such that the unique idempotent relation in {R^i:i>=1} is a quasi-order containing exactly k strongly connected components.
Original entry on oeis.org
1, 1, 3, 4, 139, 66, 48, 25575, 9280, 3072, 1536, 18077431, 4498530, 1174800, 322560, 122880
Offset: 1
Triangle begins:
1;
1;
3, 4;
139, 66, 48;
25575, 9280, 3072, 1536;
18077431, 4498530, 1174800, 322560, 122880;
...
-
nn = 5; B[n_] := n! 2^Binomial[n, 2]; s[x_, y_] := y x + (3 y + y^2) x^2/2! + (139 y + 3 y^2 + 2 y^3) x^3/3! + (25575 y + 103 y^2 + 12 y^3 + 6 y^4) x^4/
4! + (18077431 y + 4815 y^2 + 230 y^3 + 60 y^4 + 24 y^5) x^5/5! ;
ggf[egf_] :=Normal[Series[egf, {x, 0, nn}]] /.Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}]; Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[
Series[1/ggf[Exp[-s[x, y]]], {x, 0, nn}], {x, y}]]
A370464
Triangular array read by rows. T(n,k) is the number of binary relations R on [n] such that the unique idempotent in {R^i:i>=1} contains exactly k non-arcless strongly connected components, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 3, 9, 4, 25, 277, 162, 48, 543, 38409, 18136, 6912, 1536, 29281, 23169481, 7195590, 2346000, 691200, 122880
Offset: 0
Triangle begins ...
1;
1, 1;
3, 9, 4;
25, 277, 162, 48;
543, 38409, 18136, 6912, 1536;
29281, 23169481, 7195590, 2346000, 691200, 122880;
...
-
nn = 5; B[n_] := n! 2^Binomial[n, 2];s[x_, y_] := y x + (3 y + y^2) x^2/2! + (139 y + 3 y^2 + 2 y^3) x^3/3! + (25575 y + 103 y^2 + 12 y^3 + 6 y^4) x^4/
4! + (18077431 y + 4815 y^2 + 230 y^3 + 60 y^4 + 24 y^5) x^5/5! ;
ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /.Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}]; Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[-(x + s[x, y])]], {x, 0, nn}], {x, y}]]
A371633
Number of ways to choose a simple labeled graph on [n], then partition the vertex set into independent sets, then choose a vertex from each independent set.
Original entry on oeis.org
1, 1, 4, 35, 740, 34629, 3581894, 802937479, 386655984648, 396751196145673, 862046936883049482, 3946154005780155709451, 37896676657907955726032908, 760791471852690599411320471565, 31830237745009483676211065390546958, 2768049771339996987073597682850993569807
Offset: 0
-
nn = 14; B[n_] := n! 2^Binomial[n, 2];ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /.Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}];Table[B[n], {n, 0, nn}] CoefficientList[Series[Exp[ggf[x Exp[x]]], {x, 0, nn}], x]
A380374
Number of ways to topologically sort the strong components of a labeled digraph on [n].
Original entry on oeis.org
1, 1, 5, 90, 5542, 1252120, 1152382456, 4491243320144, 72454914124818352, 4729326805677997351296, 1238455260161143286333919616, 1298230864749797963009864293455616, 5444709289384095954326434486307506566400, 91344784292457849099764110418297773249212062720
Offset: 0
-
nn = 13; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
Length@# == 2 &][[All, 2]];s[z_] := Total[strong Table[z^i/B[i], {i, 1, 58}]];
B[n_] := n! 2^Binomial[n, 2];Table[B[n], {n, 0, nn}] CoefficientList[ Series[1/(1 - s[z]), {z, 0, nn}], z]
Comments