cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A361527 Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] having exactly k strongly connected components all of which are simple cycles, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 2, 21, 25, 0, 6, 213, 774, 543, 0, 24, 3470, 30275, 59830, 29281, 0, 120, 95982, 1847265, 7757355, 10110735, 3781503, 0, 720, 4578588, 190855000, 1522899105, 3944546095, 3767987307, 1138779265
Offset: 0

Views

Author

Geoffrey Critzer, Mar 14 2023

Keywords

Comments

Here, a strongly connected component containing exactly 1 vertex is considered a cycle.

Examples

			  1;
  0,  1;
  0,  1,   3;
  0,  2,  21,    25;
  0,  6, 213,   774,   543;
  0, 24,3470, 30275, 59830, 29281;
  ...
		

Crossrefs

Cf. A011266 (row sums), A003024 (main diagonal), A000142 (column k=1).

Programs

  • Mathematica
     nn = 7;
    a[x_] := Log[1/(1 - x)];
    begfa =Total[CoefficientList[ Series[1/(Total[ CoefficientList[Series[ Exp[-u *a[x]], {x, 0, nn}], x]* Table[z^n/(2^Binomial[n, 2]), {n, 0, nn}]]), {z, 0, nn}], z]*Table[z^n 2^Binomial[n, 2], {n, 0, nn}]];
    Table[Take[(Range[0, nn]! CoefficientList[begfa, {z, u}])[[i]],i], {i, 1, nn + 1}] // Grid

A370385 Triangular array read by rows. T(n,k) is the number of binary relations R on [n] such that the unique idempotent relation in {R^i:i>=1} is a quasi-order containing exactly k strongly connected components.

Original entry on oeis.org

1, 1, 3, 4, 139, 66, 48, 25575, 9280, 3072, 1536, 18077431, 4498530, 1174800, 322560, 122880
Offset: 1

Views

Author

Geoffrey Critzer, Feb 18 2024

Keywords

Examples

			Triangle begins:
        1;
        1;
        3,       4;
      139,      66,      48;
    25575,    9280,    3072,   1536;
 18077431, 4498530, 1174800, 322560, 122880;
 ...
		

Crossrefs

Cf. A366866 (row sums), A070322 (column k=1), A011266 (main diagonal), A367948, A247231, A370464.

Programs

  • Mathematica
    nn = 5; B[n_] := n! 2^Binomial[n, 2]; s[x_, y_] := y x + (3 y + y^2) x^2/2! + (139 y + 3 y^2 + 2 y^3) x^3/3! + (25575 y + 103 y^2 + 12 y^3 + 6 y^4) x^4/
        4! + (18077431 y + 4815 y^2 + 230 y^3 + 60 y^4 + 24 y^5) x^5/5! ;
    ggf[egf_] :=Normal[Series[egf, {x, 0, nn}]] /.Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}]; Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[
       Series[1/ggf[Exp[-s[x, y]]], {x, 0, nn}], {x, y}]]

Formula

Sum_{n>=1} Sum_{k=1..n} T(n,k)*y^k*x^n/(n!*2^binomial(n,2)) = 1/(E(x) @ exp(-s(x,y))) where E(x) = Sum_{n>=0} x^n/(n!*2^binomial(n,2)) and @ is the exponential Hadamard product (see Panafieu and Dovgal) and s(x,y) is the e.g.f. for A367948.

A370464 Triangular array read by rows. T(n,k) is the number of binary relations R on [n] such that the unique idempotent in {R^i:i>=1} contains exactly k non-arcless strongly connected components, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 3, 9, 4, 25, 277, 162, 48, 543, 38409, 18136, 6912, 1536, 29281, 23169481, 7195590, 2346000, 691200, 122880
Offset: 0

Views

Author

Geoffrey Critzer, Feb 19 2024

Keywords

Examples

			Triangle begins ...
     1;
     1,        1;
     3,        9,       4;
    25,      277,     162,      48;
   543,    38409,   18136,    6912,   1536;
 29281, 23169481, 7195590, 2346000, 691200, 122880;
 ...
		

Crossrefs

Cf. A002416 (row sums), A003024 (column k=0), A011266 (main diagonal), A370385.

Programs

  • Mathematica
    nn = 5; B[n_] := n! 2^Binomial[n, 2];s[x_, y_] := y x + (3 y + y^2) x^2/2! + (139 y + 3 y^2 + 2 y^3) x^3/3! + (25575 y + 103 y^2 + 12 y^3 + 6 y^4) x^4/
        4! + (18077431 y + 4815 y^2 + 230 y^3 + 60 y^4 + 24 y^5) x^5/5! ;
    ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /.Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}]; Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[-(x + s[x, y])]], {x, 0, nn}], {x, y}]]

Formula

Sum_{n>=1} Sum_{k=1..n} T(n,k)*y^k*x^n/(n!*2^binomial(n,2)) = 1/(E(x) @ exp(- (x + s(x,y)))) where E(x) = Sum_{n>=0} x^n/(n!*2^binomial(n,2)) and @ is the exponential Hadamard product (see Panafieu and Dovgal) and s(x,y) is the e.g.f. for A367948.

A371633 Number of ways to choose a simple labeled graph on [n], then partition the vertex set into independent sets, then choose a vertex from each independent set.

Original entry on oeis.org

1, 1, 4, 35, 740, 34629, 3581894, 802937479, 386655984648, 396751196145673, 862046936883049482, 3946154005780155709451, 37896676657907955726032908, 760791471852690599411320471565, 31830237745009483676211065390546958, 2768049771339996987073597682850993569807
Offset: 0

Views

Author

Geoffrey Critzer, Jun 06 2024

Keywords

Comments

An independent set is a set of vertices in a graph, no two of which are adjacent.

Crossrefs

Programs

  • Mathematica
    nn = 14; B[n_] := n! 2^Binomial[n, 2];ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /.Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}];Table[B[n], {n, 0, nn}] CoefficientList[Series[Exp[ggf[x Exp[x]]], {x, 0, nn}], x]

Formula

Sum_{n>=0} a(n)*x^n/A011266(n) = exp(f(x)) where f(x) = Sum_{n>=1} n*x^n/A011266(n).

A380374 Number of ways to topologically sort the strong components of a labeled digraph on [n].

Original entry on oeis.org

1, 1, 5, 90, 5542, 1252120, 1152382456, 4491243320144, 72454914124818352, 4729326805677997351296, 1238455260161143286333919616, 1298230864749797963009864293455616, 5444709289384095954326434486307506566400, 91344784292457849099764110418297773249212062720
Offset: 0

Views

Author

Geoffrey Critzer, Jan 23 2025

Keywords

Comments

a(n) is the number of ways to choose a labeled digraph D with n vertices (as in A053763) and then topologically sort the condensation of D, i.e., the directed acyclic graph (A003024) obtained by contracting each strongly connected component of D to a single vertex.
The cases in which D is acyclic are counted by A011266.

Crossrefs

Programs

  • Mathematica
    nn = 13; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
       Length@# == 2 &][[All, 2]];s[z_] := Total[strong Table[z^i/B[i], {i, 1, 58}]];
    B[n_] := n! 2^Binomial[n, 2];Table[B[n], {n, 0, nn}] CoefficientList[ Series[1/(1 - s[z]), {z, 0, nn}], z]

Formula

Sum_{n>=0} a(n)*x^n/B(n) = 1/(1-s(x)) where B(n) = A011266(n) and s(x) = Sum_{n>=1} A003030(n)*x^n/B(n).
Previous Showing 11-15 of 15 results.