cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 73 results. Next

A293872 Numbers having '12' as a substring of their digits.

Original entry on oeis.org

12, 112, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 212, 312, 412, 512, 612, 712, 812, 912, 1012, 1112, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 12 of A292690 and A293869. A121032 is the subsequence of multiples of 12.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Maple
    f:= proc(d) local i,x,y;
      sort(convert({seq(seq(seq(x+10^i*12+10^(i+2)*y, y=10^(d-3-i)..10^(d-2-i)-1),x=0..10^i-1),i=0..d-3),
    seq(12*10^(d-2)+x,x=0..10^(d-2)-1)},list))
    end proc:
    seq(op(f(d)),d=2..4); # Robert Israel, Nov 20 2017
  • Mathematica
    Select[Range@ 1220, SequenceCount[IntegerDigits[#], {1, 2}] > 0 &] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    is_A293872 = has(n, p=12, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293877 Numbers having '17' as substring of their digits / decimal expansion.

Original entry on oeis.org

17, 117, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 217, 317, 417, 517, 617, 717, 817, 917, 1017, 1117, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1217, 1317, 1417, 1517, 1617, 1700, 1701, 1702, 1703, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1713
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 17 of A292690 and A293869. A121037 lists the terms which are divisible by 17.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "17"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293877 = has(n, p=17, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A038770 Numbers divisible by at least one of their digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 30, 31, 32, 33, 35, 36, 39, 40, 41, 42, 44, 45, 48, 50, 51, 52, 55, 60, 61, 62, 63, 64, 65, 66, 70, 71, 72, 75, 77, 80, 81, 82, 84, 85, 88, 90, 91, 92, 93, 95, 96, 99, 100, 101, 102
Offset: 1

Views

Author

Henry Bottomley, May 04 2000

Keywords

Comments

A038769(a(n)) > 0; complement of A038772.
The decimal digit strings of this sequence are a regular language, since it is the union of A011531 and A121022 .. A121029 which are likewise regular languages. Some computer state machine manipulation for this union shows a minimum deterministic finite automaton (DFA) matching the digit strings of this sequence has 11561 states. Reversing strings (so least significant digit first) reduces to 1699 states, or reverse and allow high 0's (which become trailing 0's due to the reverse) reduces to 1424 states. The latter are tractable sizes for the linear recurrence in A327560. - Kevin Ryde, Dec 04 2019

Examples

			35 is included because 5 is a divisor of 35, but 37 is not included because neither 3 nor 7 is a divisor of 37.
		

Crossrefs

Cf. A327560 (counts), A038772 (complement), A034709, A034837, A038769.

Programs

  • Haskell
    a038770 n = a038770_list !! (n-1)
    a038770_list = filter f [1..] where
       f u = g u where
         g v = v > 0 && (((d == 0 || r > 0) && g v') || r == 0)
               where (v',d) = divMod v 10; r = mod u d
    -- Reinhard Zumkeller, Jul 30 2015, Jun 19 2011
    
  • Mathematica
    Select[Range[120],MemberQ[Divisible[#,Cases[IntegerDigits[#],Except[0]]], True]&] (* Harvey P. Dale, Jun 20 2011 *)
    Select[Range[120],AnyTrue[#/DeleteCases[IntegerDigits[#],0],IntegerQ]&] (* Harvey P. Dale, Mar 29 2024 *)
  • PARI
    is(n)=my(v=vecsort(eval(Vec(Str(n))),,8));for(i=if(v[1],1,2),#v,if(n%v[i]==0,return(1)));0 \\ Charles R Greathouse IV, Jul 22 2011
    
  • Python
    def ok(n): return any(n%int(d) == 0 for d in str(n) if d != '0')
    print(list(filter(ok, range(1, 103)))) # Michael S. Branicky, May 20 2021

Formula

a(n) ~ n. - Charles R Greathouse IV, Jul 22 2011

A118950 Numbers containing at least one prime digit.

Original entry on oeis.org

2, 3, 5, 7, 12, 13, 15, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 45, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 62, 63, 65, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83, 85, 87, 92, 93, 95, 97, 102, 103, 105, 107, 112
Offset: 1

Views

Author

Rick L. Shepherd, May 06 2006

Keywords

Comments

A193238(a(n)) > 0; complement of A084984; A092620, A092624 and A092625 are subsequences. - Reinhard Zumkeller, Jul 19 2011

Crossrefs

Programs

  • Haskell
    a118950 n = a118950_list !! (n-1)
    a118950_list = filter (any (`elem` "2357") . show ) [0..]
    -- Reinhard Zumkeller, Jul 19 2011
    
  • Mathematica
    Select[Range[150],AnyTrue[IntegerDigits[#],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 19 2018 *)
  • PARI
    is(n)=!!#select(isprime, digits(n)) \\ Charles R Greathouse IV, Sep 15 2015

Formula

a(n) = n + O(n^k) with k = log 6/log 10 = 0.77815.... - Charles R Greathouse IV, Sep 15 2015

A293870 Numbers having '10' as substring of their digits.

Original entry on oeis.org

10, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 210, 310, 410, 510, 610, 710, 810, 910, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 10 of A292690 and A293869.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[1100],SequenceCount[IntegerDigits[#],{1,0}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 07 2019 *)
  • PARI
    is_A293870 = has(n, p=10, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293874 Numbers having '14' as substring of their digits.

Original entry on oeis.org

14, 114, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 214, 314, 414, 514, 614, 714, 814, 914, 1014, 1114, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1214, 1314, 1400, 1401, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 14 of A292690 and A293869.

Crossrefs

Cf. A292690, A293869. A121034 lists the terms which are divisible by 14.
Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "14"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293874 = has(n, p=14, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293875 Numbers having '15' as substring of their digits.

Original entry on oeis.org

15, 115, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 215, 315, 415, 515, 615, 715, 815, 915, 1015, 1115, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1215, 1315, 1415, 1500, 1501, 1502, 1503, 1504, 1505, 1506, 1507, 1508, 1509, 1510, 1511, 1512, 1513, 1514, 1515
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 15 of A292690 and A293869. A121035 lists the terms which are divisible by 15.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "15"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293875 = has(n, p=15, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293876 Numbers having '16' as substring of their digits / decimal expansion.

Original entry on oeis.org

16, 116, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 216, 316, 416, 516, 616, 716, 816, 916, 1016, 1116, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1216, 1316, 1416, 1516, 1600, 1601, 1602, 1603, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1613, 1614
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 16 of A292690 and A293869. A121036 lists the terms which are divisible by 16.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "16"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293876 = has(n, p=16, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293878 Numbers having '18' as substring of their digits / decimal expansion.

Original entry on oeis.org

18, 118, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 218, 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1218, 1318, 1418, 1518, 1618, 1718, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1807, 1808, 1809, 1810, 1811, 1812
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 16 of A292690 and A293869. A121038 lists the terms which are divisible by 18.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "18"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293878 = has(n, p=18, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293879 Numbers having '19' as substring of their digits.

Original entry on oeis.org

19, 119, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 219, 319, 419, 519, 619, 719, 819, 919, 1019, 1119, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1219, 1319, 1419, 1519, 1619, 1719, 1819, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 19 of A292690 and A293869. A121039 lists the terms which are divisible by 19.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000],SequenceCount[IntegerDigits[#],{1,9}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 11 2019 *)
  • PARI
    is_A293879 = has(n, p=19, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022
Previous Showing 31-40 of 73 results. Next