cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A046034 Numbers whose digits are primes.

Original entry on oeis.org

2, 3, 5, 7, 22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 222, 223, 225, 227, 232, 233, 235, 237, 252, 253, 255, 257, 272, 273, 275, 277, 322, 323, 325, 327, 332, 333, 335, 337, 352, 353, 355, 357, 372, 373, 375, 377, 522, 523, 525, 527, 532
Offset: 1

Views

Author

Keywords

Comments

If n is represented as a zerofree base-4 number (see A084544) according to n=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=2,3,5,7 for k=1..4. - Hieronymus Fischer, May 30 2012
According to A153025, it seems that 5, 235 and 72335 are the only terms whose square is also a term, i.e., which are also in the sequence A275971 of square roots of the terms which are squares, listed in A191486. - M. F. Hasler, Sep 16 2016

Examples

			a(100)   = 2277,
a(10^3)  = 55327,
a(9881)  = 3233232,
a(10^4)  = 3235757,
a(10922) = 3333333,
a(10^5)  = 227233257.
		

Crossrefs

Programs

  • Haskell
    a046034 n = a046034_list !! (n-1)
    a046034_list = filter (all (`elem` "2357") . show ) [0..]
    -- Reinhard Zumkeller, Jul 19 2011
    
  • Magma
    [n: n in [2..532] | Set(Intseq(n)) subset [2, 3, 5, 7]];  // Bruno Berselli, Jul 19 2011
    
  • Mathematica
    Table[FromDigits /@ Tuples[{2, 3, 5, 7}, n], {n, 3}] // Flatten (* Michael De Vlieger, Sep 19 2016 *)
  • PARI
    is_A046034(n)=Set(isprime(digits(n)))==[1] \\ M. F. Hasler, Oct 12 2013
    
  • Python
    def A046034(n):
        m = (3*n+1).bit_length()-1>>1
        return int(''.join(('2357'[(3*n+1-(1<<(m<<1)))//(3<<((m-1-j)<<1))&3] for j in range(m)))) # Chai Wah Wu, Feb 08 2023

Formula

A055642(a(n)) = A193238(a(n)). - Reinhard Zumkeller, Jul 19 2011
From Hieronymus Fischer, Apr 20, May 30 and Jun 25 2012: (Start)
a(n) = Sum_{j=0..m-1} ((2*b(j)+1) mod 8 + floor(b(j)/4) - floor((b(j)-1)/4))*10^j, where m = floor(log_4(3*n+1)), b(j) = floor((3*n+1-4^m)/(3*4^j)).
a(n) = Sum_{j=0..m-1} A010877(A005408(b(j)) + A002265(b(j)) - A002265(b(j)-1))*10^j.
Special values:
a(1*(4^n-1)/3) = 2*(10^n-1)/9.
a(2*(4^n-1)/3) = 1*(10^n-1)/3.
a(3*(4^n-1)/3) = 5*(10^n-1)/9.
a(4*(4^n-1)/3) = 7*(10^n-1)/9.
Inequalities:
a(n) <= 2*(10^log_4(3*n+1)-1)/9, equality holds for n = (4^k-1)/3, k>0.
a(n) <= 2*A084544(n), equality holds iff all digits of A084544(n) are 1.
a(n) > A084544(n).
Lower and upper limits:
lim inf a(n)/10^log_4(n) = (7/90)*10^log_4(3) = 0.48232167706987..., for n -> oo.
lim sup a(n)/10^log_4(n) = (2/9)*10^log_4(3) = 1.378061934485343..., for n -> oo.
where 10^log_4(n) = n^1.66096404744...
G.f.: g(x) = (x^(1/3)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(4/3)*(2 + z(j) + 2*z(j)^2 + 2*z(j)^3 - 7*z(j)^4)/(1-z(j)^4), where z(j) = x^4^j.
Also g(x) = (x^(1/3)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(4/3)*(1-z(j))*(2 + 3*z(j) + 5*z(j)^2 + 7*z(j)^3)/(1-z(j)^4), where z(j)=x^4^j.
Also: g(x) = (1/(1-x))*(2*h_(4,0)(x) + h_(4,1)(x) + 2*h_(4,2)(x) + 2*h_(4,3)(x) - 7*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*x^((4^(j+1)-1)/3)*x^(k*4^j)/(1-x^4^(j+1)). (End)
Sum_{n>=1} 1/a(n) = 1.857333779940977502574887651449435985318556794733869779170825138954093657197... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024

Extensions

More terms from Cino Hilliard, Aug 06 2006
Typo in second formula corrected by Hieronymus Fischer, May 12 2012
Two typos in example section corrected by Hieronymus Fischer, May 30 2012

A084984 Numbers containing no prime digits.

Original entry on oeis.org

0, 1, 4, 6, 8, 9, 10, 11, 14, 16, 18, 19, 40, 41, 44, 46, 48, 49, 60, 61, 64, 66, 68, 69, 80, 81, 84, 86, 88, 89, 90, 91, 94, 96, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 114, 116, 118, 119, 140, 141, 144, 146, 148, 149, 160, 161, 164, 166, 168, 169
Offset: 1

Views

Author

Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 27 2003

Keywords

Comments

Complement of A118950. - Reinhard Zumkeller, Jul 19 2011
If n-1 is represented as a base-6 number (see A007092) according to n-1=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n)= sum_{j=0..m} c(d(j))*10^j, where c(k)=0,1,4,6,8,9 for k=0..5. - Hieronymus Fischer, May 30 2012

Examples

			166 has digits 1 and 6 and they are nonprime digits.
a(1000) = 8686.
a(10^4) = 118186
a(10^5) = 4090986.
a(10^6) = 66466686.
		

Crossrefs

Programs

  • Haskell
    a084984 n = a084984_list !! (n-1)
    a084984_list = filter (not . any (`elem` "2357") . show ) [0..]
    -- Reinhard Zumkeller, Jul 19 2011
    
  • Magma
    [n: n in [0..169] | forall{d: d in [2,3,5,7] | d notin Set(Intseq(n))}];  // Bruno Berselli, Jul 19 2011
    
  • Mathematica
    npdQ[n_]:=And@@Table[FreeQ[IntegerDigits[n],i],{i,{2,3,5,7}}]; Select[ Range[ 0,200],npdQ] (* Harvey P. Dale, Jul 22 2013 *)
  • PARI
    is(n)=isprime(eval(Vec(Str(n))))==0 \\ Charles R Greathouse IV, Feb 20 2012
    
  • PARI
    my(table=[0,1,4,6,8,9]); \
    a(n) = fromdigits([table[d+1] |d<-digits(n-1,6)]); \\ Kevin Ryde, May 27 2025

Formula

A193238(a(n)) = 0. - Reinhard Zumkeller, Jul 19 2011
a(n) >> n^1.285. - Charles R Greathouse IV, Feb 20 2012
From Hieronymus Fischer, May 30 and Jun 25 2012: (Start)
a(n) = ((2*b_m(n)+1) mod 10 + floor((b_m(n)+4)/5) - floor((b_m(n)+1)/5))*10^m + sum_{j=0..m-1} ((2*b_j(n))) mod 12 + floor(b_j(n)/6) - floor((b_j(n)+1)/6) + floor((b_j(n)+4)/6) - floor((b_j(n)+5)/6)))*10^j, where n>1, b_j(n)) = floor((n-1-6^m)/6^j), m = floor(log_6(n-1)).
Special values:
a(1*6^n+1) = 1*10^n.
a(2*6^n+1) = 4*10^n.
a(3*6^n+1) = 6*10^n.
a(4*6^n+1) = 8*10^n.
a(5*6^n+1) = 9*10^n.
a(2*6^n) = 2*10^n - 1.
a(n) = 10^log_6(n-1) for n=6^k+1, k>0.
Inequalities:
a(n) < 10^log_6(n-1) for 6^k+10.
a(n) > 10^log_6(n-1) for 2*6^k=0.
a(n) <= 4*10^(log_6(n-1)-log_6(2)) = 1.641372618*10^(log_6(n-1)), equality holds for n=2*6^k+1, k>=0.
a(n) > 2*10^(log_6(n-1)-log_6(2)) = 0.820686309*10^(log_6(n-1)).
a(n) = A007092(n-1) iff the digits of A007092(n-1) are 0 or 1, a(n)>A007092(n-1), else.
a(n) >= A202267(n), equality holds if the representation of n-1 as a base-6 number has only digits 0 or 1.
Lower and upper limits:
lim inf a(n)/10^log_6(n) = 2/10^log_6(2) = 0.820686309, for n --> inf.
lim sup a(n)/10^log_6(n) = 4/10^log_6(2) = 1.641372618, for n --> inf.
where 10^log_6(n) = n^1.2850972089...
G.f.: g(x) = (x/(1-x))*sum_{j>=0} 10^j*x^6^j * (1-x^6^j)*((1+x^6^j)^4 + 4(1+2x^6^j) * x^(3*6^j))/(1-x^6^(j+1)).
Also: g(x) = (x/(1-x))*(h_(6,1)(x) + 3*h_(6,2)(x) + 2*h_(6,3)(x) + 2*h_(6,4)(x) + h_(6,5)(x) - 9*h_(6,6)(x)), where h_(6,k)(x) = sum_{j>=0} 10^j*x^(k*6^j)/(1-x^6^(j+1)). (End)
Sum_{n>=2} 1/a(n) = 3.614028405471074989720026361356036456697082276983705341077940360653303099111... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024

Extensions

0 added by N. J. A. Sloane, Feb 02 2009
100 added by Arkadiusz Wesolowski, Mar 10 2011
Examples for n>=10^3 added by Hieronymus Fischer, May 30 2012

A193238 Number of prime digits in decimal representation of n.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 0, 0, 1, 1, 0, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 19 2011

Keywords

Crossrefs

Programs

Formula

a(A084984(n))=0; a(A118950(n))>0; a(A092620(n))=1; a(A092624(n))=2; a(A092625(n))=3; a(A046034(n))=A055642(A046034(n));
a(A000040(n)) = A109066(n).
From Hieronymus Fischer, May 30 2012: (Start)
a(n) = sum_{j=1..m+1} (floor(n/10^j+0.3) + floor(n/10^j+0.5) + floor(n/10^j+0.8) - floor(n/10^j+0.2) - floor(n/10^j+0.4) - floor(n/10^j+0.6)), where m=floor(log_10(n)), n>0.
a(10n+k) = a(n) + a(k), 0<=k<10, n>=0.
a(n) = a(floor(n/10)) + a(n mod 10), n>=0.
a(n) = sum_{j=0..m} a(floor(n/10^j) mod 10), n>=0.
a(A046034(n)) = floor(log_4(3n+1)), n>0.
a(A211681(n)) = 1 + floor((n-1)/4), n>0.
G.f.: g(x) = (1/(1-x))*sum_{j>=0} (x^(2*10^j) + x^(3*10^j)+ x^(5*10^j) + x^(7*10^j))*(1-x^10^j)/(1-x^10^(j+1)).
Also: g(x) = (1/(1-x))*sum_{j>=0} (x^(2*10^j)- x^(4*10^j)+ x^(5*10^j)- x^(6*10^j)+ x^(7*10^j)- x^(8*10^j))/(1-x^10^(j+1)). (End)

A179336 Primes containing at least one prime digit in base 10.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 23, 29, 31, 37, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 103, 107, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 193, 197, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 11 2010

Keywords

Comments

a(n) = A080608(n) for n<28; A080608 is a subsequence;
A179335(n) < 10 iff prime(n) is in this sequence;
A109066(n) > 0 iff prime(n) is in this sequence. [Corrected by M. F. Hasler, Aug 27 2012]

Crossrefs

Intersection of A118950 and A000040; relative complement A000040 \ A034844.

Programs

  • Haskell
    a179336 n = a179336_list !! (n-1)
    a179336_list = filter (any (`elem` "2357") . show ) a000040_list
    -- Reinhard Zumkeller, Jul 19 2011

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Nov 01 2022

A092620 Numbers with exactly one prime digit.

Original entry on oeis.org

2, 3, 5, 7, 12, 13, 15, 17, 20, 21, 24, 26, 28, 29, 30, 31, 34, 36, 38, 39, 42, 43, 45, 47, 50, 51, 54, 56, 58, 59, 62, 63, 65, 67, 70, 71, 74, 76, 78, 79, 82, 83, 85, 87, 92, 93, 95, 97, 102, 103, 105, 107, 112, 113, 115, 117, 120, 121, 124, 126, 128, 129, 130, 131, 134
Offset: 1

Views

Author

Jani Melik, Apr 11 2004

Keywords

Comments

A193238(a(n))=1; subsequence of A118950. - Reinhard Zumkeller, Jul 19 2011

Examples

			12 has one prime digit, 2;
102 has one prime digit, 2.
		

Crossrefs

Subsequence of A118950.

Programs

  • Haskell
    import Data.List (elemIndices)
    a092620 n = a092620_list !! (n-1)
    a092620_list = elemIndices 1 a193238_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Maple
    stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: ts_stpf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='true') then stpf:=stpf+1; # number of prime digits fi od; RETURN(stpf) end: ts_pr_n:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( isprime(i)='true' and ts_stpf(i) =0) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_n(300);
  • Mathematica
    Select[Range[150],Count[IntegerDigits[#],?(PrimeQ)]==1&] (* _Harvey P. Dale, Mar 23 2018 *)

Formula

There are 6^n*(n-1/6)*2/3 n-digit members of this sequence for n > 1. - Charles R Greathouse IV, Apr 23 2022

A085557 Numbers that have more prime digits than nonprime digits.

Original entry on oeis.org

2, 3, 5, 7, 22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 122, 123, 125, 127, 132, 133, 135, 137, 152, 153, 155, 157, 172, 173, 175, 177, 202, 203, 205, 207, 212, 213, 215, 217, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232
Offset: 1

Views

Author

Jason Earls, Jul 04 2003

Keywords

Comments

Begins to differ from A046034 at the 21st term (which is the first 3-digit term).

Examples

			133 is in the sequence as the prime digits are 3 and 3 (those are two digits; counted with multiplicity) and one nonprime digit 1 and so there are more prime digits than nonprime digits. - _David A. Corneth_, Sep 06 2020
		

Crossrefs

Programs

  • PARI
    is(n) = my(d = digits(n), c = 0); for(i = 1, #d, if(isprime(d[i]), c++)); c<<1 > #d \\ David A. Corneth, Sep 06 2020
    
  • Python
    from itertools import count, islice
    def A085557_gen(startvalue=1): # generator of terms
        return filter(lambda n:len(s:=str(n))<(sum(1 for d in s if d in {'2','3','5','7'})<<1),count(max(startvalue,1)))
    A085557_list = list(islice(A085557_gen(),20)) # Chai Wah Wu, Feb 08 2023

A092624 Numbers with exactly two prime digits.

Original entry on oeis.org

22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 122, 123, 125, 127, 132, 133, 135, 137, 152, 153, 155, 157, 172, 173, 175, 177, 202, 203, 205, 207, 212, 213, 215, 217, 220, 221, 224, 226, 228, 229, 230, 231, 234, 236, 238, 239, 242, 243, 245
Offset: 1

Views

Author

Jani Melik, Apr 11 2004

Keywords

Comments

A193238(a(n))=2; subsequence of A118950. [Reinhard Zumkeller, Jul 19 2011]

Examples

			25 has two prime digits, 2 and 5;
207 has two prime digits, 2 and 7.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a092624 n = a092624_list !! (n-1)
    a092624_list = elemIndices 2 a193238_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Maple
    stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: ts_stpf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='true') then stpf:=stpf+1; # number of prime digits fi od; RETURN(stpf) end: ts_pr_nd:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( ts_stpf(i) = 2) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_nd(500);
  • Mathematica
    Select[Range[300],Count[IntegerDigits[#],?PrimeQ]==2&] (* _Harvey P. Dale, Apr 20 2025 *)

A092625 Numbers with exactly three prime digits.

Original entry on oeis.org

222, 223, 225, 227, 232, 233, 235, 237, 252, 253, 255, 257, 272, 273, 275, 277, 322, 323, 325, 327, 332, 333, 335, 337, 352, 353, 355, 357, 372, 373, 375, 377, 522, 523, 525, 527, 532, 533, 535, 537, 552, 553, 555, 557, 572, 573, 575, 577, 722, 723, 725
Offset: 1

Views

Author

Jani Melik, Apr 11 2004

Keywords

Comments

It is the same as A046034 from two digit numbers from 22 up to four digit numbers from 1222.
A193238(a(n))=3; subsequence of A118950. [Reinhard Zumkeller, Jul 19 2011]

Examples

			222 has three prime digits, three times 2;
1235 has three prime digits, 2, 3 and 5.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a092625 n = a092625_list !! (n-1)
    a092625_list = elemIndices 3 a193238_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Maple
    stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: ts_stpf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='true') then stpf:=stpf+1; # number of prime digits fi od; RETURN(stpf) end: ts_pr_nt:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( ts_stpf(i) = 3) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_nt(2000);
  • Mathematica
    Select[Range[800],Total[Boole[PrimeQ[IntegerDigits[#]]]]==3&] (* Harvey P. Dale, Dec 31 2023 *)

A260181 Numbers whose last digit is prime.

Original entry on oeis.org

2, 3, 5, 7, 12, 13, 15, 17, 22, 23, 25, 27, 32, 33, 35, 37, 42, 43, 45, 47, 52, 53, 55, 57, 62, 63, 65, 67, 72, 73, 75, 77, 82, 83, 85, 87, 92, 93, 95, 97, 102, 103, 105, 107, 112, 113, 115, 117, 122, 123, 125, 127, 132, 133, 135, 137, 142, 143, 145, 147
Offset: 1

Views

Author

Wesley Ivan Hurt, Jul 17 2015

Keywords

Comments

Numbers ending in 2, 3, 5 or 7.
The subsequence of primes is A042993. - Michel Marcus, Jul 19 2015
From Wesley Ivan Hurt, Aug 15 2015, Sep 26 2015: (Start)
Ceiling(a(n)/2) = A047201(n).
Complement of (A197652 Union A262389). (End)

Crossrefs

Cf. A042993, A047201, A092620, subset of A118950.
Union of A017293, A017305, A017329 and A017353.
First differences are [1,2,2,5,...] = A002522(A140081(n-1)).

Programs

  • GAP
    a:=n->(5*n-4-(-1)^n+((3-(-1)^n)/2)*(-1)^((2*n+5-(-1)^n)/4))/2; List([1..60],n->a(n)); # Muniru A Asiru, Feb 16 2018
  • Magma
    [(5*n-4-(-1)^n+((3-(-1)^n) div 2)*(-1)^((2*n+5-(-1)^n) div 4))/2: n in [1..70]]; // Vincenzo Librandi, Jul 18 2015
    
  • Maple
    A260181:=n->(5*n-4-(-1)^n+((3-(-1)^n)/2)*(-1)^((2*n+5-(-1)^n)/4))/2: seq(A260181(n), n=1..100);
  • Mathematica
    CoefficientList[Series[(2 + x + 2 x^2 + 2 x^3 + 3 x^4)/((x - 1)^2*(1 + x + x^2 + x^3)), {x, 0, 100}], x]
    LinearRecurrence[{1, 0, 0, 1, -1}, {2, 3, 5, 7, 12}, 60] (* Vincenzo Librandi, Jul 18 2015 *)
    Table[(5n - 4 - (-1)^n + ((3 - (-1)^n)/2)*(-1)^((2*n + 5 - (-1)^n)/4))/2, {n, 100}] (* Wesley Ivan Hurt, Aug 11 2015 *)
  • PARI
    is(n)=my(m=digits(n));isprime(m[#m]) \\ Anders Hellström, Jul 19 2015
    
  • PARI
    A260181(n)=(n--)\4*10+prime(n%4+1) \\ is(n)=isprime(n%10) is much more efficient than the above. - M. F. Hasler, Sep 16 2016
    

Formula

G.f.: x*(2+x+2*x^2+2*x^3+3*x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1)+a(n-4)-a(n-5), n>5.
a(n) = (5*n-4-(-1)^n+((3-(-1)^n)/2)*(-1)^((2*n+5-(-1)^n)/4))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(5*sqrt(5+2*sqrt(5))) - 25*log(5) - 40*log(2) + 5*sqrt(5)*arccoth(843/2))/200. - Amiram Eldar, Jul 30 2024

A118951 Numbers containing at least one composite digit.

Original entry on oeis.org

4, 6, 8, 9, 14, 16, 18, 19, 24, 26, 28, 29, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 104, 106, 108, 109, 114
Offset: 1

Views

Author

Rick L. Shepherd, May 06 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[120],ContainsAny[IntegerDigits[#],{4,6,8,9}]&] (* Harvey P. Dale, Sep 06 2018 *)
Showing 1-10 of 11 results. Next