cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118950 Numbers containing at least one prime digit.

Original entry on oeis.org

2, 3, 5, 7, 12, 13, 15, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 45, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 62, 63, 65, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83, 85, 87, 92, 93, 95, 97, 102, 103, 105, 107, 112
Offset: 1

Views

Author

Rick L. Shepherd, May 06 2006

Keywords

Comments

A193238(a(n)) > 0; complement of A084984; A092620, A092624 and A092625 are subsequences. - Reinhard Zumkeller, Jul 19 2011

Crossrefs

Programs

  • Haskell
    a118950 n = a118950_list !! (n-1)
    a118950_list = filter (any (`elem` "2357") . show ) [0..]
    -- Reinhard Zumkeller, Jul 19 2011
    
  • Mathematica
    Select[Range[150],AnyTrue[IntegerDigits[#],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 19 2018 *)
  • PARI
    is(n)=!!#select(isprime, digits(n)) \\ Charles R Greathouse IV, Sep 15 2015

Formula

a(n) = n + O(n^k) with k = log 6/log 10 = 0.77815.... - Charles R Greathouse IV, Sep 15 2015

A262389 Numbers whose last digit is composite.

Original entry on oeis.org

4, 6, 8, 9, 14, 16, 18, 19, 24, 26, 28, 29, 34, 36, 38, 39, 44, 46, 48, 49, 54, 56, 58, 59, 64, 66, 68, 69, 74, 76, 78, 79, 84, 86, 88, 89, 94, 96, 98, 99, 104, 106, 108, 109, 114, 116, 118, 119, 124, 126, 128, 129, 134, 136, 138, 139, 144, 146, 148, 149
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 21 2015

Keywords

Comments

Numbers ending in 4, 6, 8 or 9.
Union of A017317, A017341, A017365 and A017377.
Subsequence of A118951 (numbers containing at least one composite digit).
Complement of (A197652 Union A260181).

Crossrefs

Cf. A118951, A197652, A260181 (last digit is prime).

Programs

  • Magma
    [(5*n+1-(-1)^n+(3+(-1)^n)*(-1)^((2*n-3-(-1)^n) div 4) div 2) div 2: n in [1..70]]; // Vincenzo Librandi, Sep 21 2015
  • Maple
    A262389:=n->(5*n+1-(-1)^n+(3+(-1)^n)*(-1)^((2*n-3-(-1)^n)/4)/2)/2: seq(A262389(n), n=1..100);
  • Mathematica
    Table[(5n+1-(-1)^n+(3+(-1)^n)*(-1)^((2n-3-(-1)^n)/4)/2)/2, {n, 100}]
    LinearRecurrence[{1, 0, 0, 1, -1}, {4, 6, 8, 9, 14}, 80] (* Vincenzo Librandi, Sep 21 2015 *)
    CoefficientList[Series[(4 + 2*x + 2*x^2 + x^3 + x^4)/((x - 1)^2*(1 + x + x^2 + x^3)), {x, 0, 80}], x] (* Wesley Ivan Hurt, Sep 21 2015 *)
    Select[Range[200],CompositeQ[Mod[#,10]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 21 2019 *)

Formula

G.f.: x*(4+2*x+2*x^2+x^3+x^4)/((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (5*n+1-(-1)^n+(3+(-1)^n)*(-1)^((2*n-3-(-1)^n)/4)/2)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(10-2*sqrt(5))*Pi - sqrt(5)*arccoth(3/sqrt(5)) - 4*log(2))/20. - Amiram Eldar, Jul 30 2024

Extensions

Name edited by Jon E. Schoenfield, Feb 15 2018
Showing 1-2 of 2 results.