cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A293870 Numbers having '10' as substring of their digits.

Original entry on oeis.org

10, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 210, 310, 410, 510, 610, 710, 810, 910, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 10 of A292690 and A293869.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[1100],SequenceCount[IntegerDigits[#],{1,0}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 07 2019 *)
  • PARI
    is_A293870 = has(n, p=10, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293874 Numbers having '14' as substring of their digits.

Original entry on oeis.org

14, 114, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 214, 314, 414, 514, 614, 714, 814, 914, 1014, 1114, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1214, 1314, 1400, 1401, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 14 of A292690 and A293869.

Crossrefs

Cf. A292690, A293869. A121034 lists the terms which are divisible by 14.
Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "14"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293874 = has(n, p=14, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293875 Numbers having '15' as substring of their digits.

Original entry on oeis.org

15, 115, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 215, 315, 415, 515, 615, 715, 815, 915, 1015, 1115, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1215, 1315, 1415, 1500, 1501, 1502, 1503, 1504, 1505, 1506, 1507, 1508, 1509, 1510, 1511, 1512, 1513, 1514, 1515
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 15 of A292690 and A293869. A121035 lists the terms which are divisible by 15.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "15"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293875 = has(n, p=15, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293876 Numbers having '16' as substring of their digits / decimal expansion.

Original entry on oeis.org

16, 116, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 216, 316, 416, 516, 616, 716, 816, 916, 1016, 1116, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1216, 1316, 1416, 1516, 1600, 1601, 1602, 1603, 1604, 1605, 1606, 1607, 1608, 1609, 1610, 1611, 1612, 1613, 1614
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 16 of A292690 and A293869. A121036 lists the terms which are divisible by 16.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "16"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293876 = has(n, p=16, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293878 Numbers having '18' as substring of their digits / decimal expansion.

Original entry on oeis.org

18, 118, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 218, 318, 418, 518, 618, 718, 818, 918, 1018, 1118, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1218, 1318, 1418, 1518, 1618, 1718, 1800, 1801, 1802, 1803, 1804, 1805, 1806, 1807, 1808, 1809, 1810, 1811, 1812
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 16 of A292690 and A293869. A121038 lists the terms which are divisible by 18.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "18"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293878 = has(n, p=18, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293879 Numbers having '19' as substring of their digits.

Original entry on oeis.org

19, 119, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 219, 319, 419, 519, 619, 719, 819, 919, 1019, 1119, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1219, 1319, 1419, 1519, 1619, 1719, 1819, 1900, 1901, 1902, 1903, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 19 of A292690 and A293869. A121039 lists the terms which are divisible by 19.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000],SequenceCount[IntegerDigits[#],{1,9}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 11 2019 *)
  • PARI
    is_A293879 = has(n, p=19, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A043497 Numbers having one 2 in base 10.

Original entry on oeis.org

2, 12, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62, 72, 82, 92, 102, 112, 120, 121, 123, 124, 125, 126, 127, 128, 129, 132, 142, 152, 162, 172, 182, 192, 200, 201, 203, 204, 205, 206, 207, 208, 209, 210, 211, 213, 214, 215
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A293873 Numbers having '13' as substring of their digits.

Original entry on oeis.org

13, 113, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 213, 313, 413, 513, 613, 713, 813, 913, 1013, 1113, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139, 1213, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 13 of A292690 and A293869. A121033 is the subsequence of multiples of 13.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[1350],SequenceCount[IntegerDigits[#],{1,3}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 31 2017 *)
  • PARI
    is_A293873 = has(n, p=13, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293880 Numbers having '20' as substring of their digits.

Original entry on oeis.org

20, 120, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 220, 320, 420, 520, 620, 720, 820, 920, 1020, 1120, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1220, 1320, 1420, 1520, 1620, 1720, 1820, 1920, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 20 of A292690 and A293869. A121040 lists the terms which are divisible by 19.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2100],SequenceCount[IntegerDigits[#],{2,0}]>0&] (* Harvey P. Dale, Jul 25 2021 *)
  • PARI
    is_A293880 = has(n, p=20, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A208272 Primes containing a digit 2.

Original entry on oeis.org

2, 23, 29, 127, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 421, 521, 523, 727, 821, 823, 827, 829, 929, 1021, 1123, 1129, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1321, 1327
Offset: 1

Views

Author

Jaroslav Krizek, Mar 04 2012

Keywords

Comments

Supersequence of A045708. Subsequence of A011532.
Complement of A208273 with respect to A011532.
Also primes p whose divisors d_k (k = 1, 2; 1 = d_1 < d_2 = p) contain digit equal to number k.
Complement of A208275 with respect to A208274.
Primes with at least one digit equal to 2. - Harvey P. Dale, Aug 29 2012

Crossrefs

Cf. A208273 (composites containing a digit 2), A011532 (numbers containing a digit 2).

Programs

  • Mathematica
    Select[Range[2000], PrimeQ[#] && MemberQ[IntegerDigits[#], 2] &] (* T. D. Noe, Mar 06 2012 *)
    Select[Prime[Range[300]],DigitCount[#,10,2]>0&] (* Harvey P. Dale, Aug 29 2012 *)

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Nov 01 2022
Previous Showing 11-20 of 31 results. Next