cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 55 results. Next

A293871 Numbers having 11 as substring of their digits.

Original entry on oeis.org

11, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 211, 311, 411, 511, 611, 711, 811, 911, 1011, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107, 1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Crossrefs

Row 11 of A292690 and A293869.
Cf. A292451, A292731 (both partially coincide with this sequence, but no inclusion relation holds).
Cf. A011540, A011531, A011532, A011533, A011534, A011535, A011536, A011537, A011538, A011539: analog for substrings '0' through '9'.
Cf. A293870, A293872, A293873, A293874, A293875, A293876, A293877, A293878, A293879, A293880: same for substrings '10' - '20'.
Cf. A121031: subsequence of terms divisible by 11.
Numbers divisible by k and having k as a substring: A121022 (2), A121023 (3), A121024 (4), A121025 (5), A121026 (6), A121027 (7), A121028 (8), A121029 (9), A121030 (10), A121031 (11), A121032 (12), A121033 (13), A121034 (14), A121035 (15), A121036 (16), A121037 (17), A121038 (18), A121039 (19), A121040 (20).
Cf. A121041.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "11"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293871 = has(n,p=11,m=10^#Str(p))=until(p>n\=10,n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293872 Numbers having '12' as a substring of their digits.

Original entry on oeis.org

12, 112, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 212, 312, 412, 512, 612, 712, 812, 912, 1012, 1112, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 12 of A292690 and A293869. A121032 is the subsequence of multiples of 12.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Maple
    f:= proc(d) local i,x,y;
      sort(convert({seq(seq(seq(x+10^i*12+10^(i+2)*y, y=10^(d-3-i)..10^(d-2-i)-1),x=0..10^i-1),i=0..d-3),
    seq(12*10^(d-2)+x,x=0..10^(d-2)-1)},list))
    end proc:
    seq(op(f(d)),d=2..4); # Robert Israel, Nov 20 2017
  • Mathematica
    Select[Range@ 1220, SequenceCount[IntegerDigits[#], {1, 2}] > 0 &] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    is_A293872 = has(n, p=12, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293877 Numbers having '17' as substring of their digits / decimal expansion.

Original entry on oeis.org

17, 117, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 217, 317, 417, 517, 617, 717, 817, 917, 1017, 1117, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1217, 1317, 1417, 1517, 1617, 1700, 1701, 1702, 1703, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1713
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 17 of A292690 and A293869. A121037 lists the terms which are divisible by 17.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "17"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293877 = has(n, p=17, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A333656 Numbers having at least one 5 in their representation in base 6.

Original entry on oeis.org

5, 11, 17, 23, 29, 30, 31, 32, 33, 34, 35, 41, 47, 53, 59, 65, 66, 67, 68, 69, 70, 71, 77, 83, 89, 95, 101, 102, 103, 104, 105, 106, 107, 113, 119, 125, 131, 137, 138, 139, 140, 141, 142, 143, 149, 155, 161, 167, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184
Offset: 1

Views

Author

François Marques, Sep 20 2020

Keywords

Comments

Complementary sequence to A037465.

Examples

			22 is not in the sequence since it is 34_6 in base 6, but 23 is in the sequence since it is 35_6 in base 6.
		

Crossrefs

Cf. Numbers with at least one digit b-1 in base b : A074940 (b=3), A337250 (b=4), A337572 (b=5), this sequence (b=6), A337141 (b=7), A337239 (b=8), A338090 (b=9), A011539 (b=10), A095778 (b=11).
Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11).

Programs

  • Maple
    seq(`if`(numboccur(5, convert(n, base, 6))>0, n, NULL), n=0..100);
  • Mathematica
    Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 6 ], 5 ]>0)& ]
  • PARI
    isok(m) = #select(x->(x==5), digits(m, 6)) >= 1;
    
  • Python
    from gmpy2 import digits
    def A333656(n):
        def f(x):
            l = (s:=digits(x,6)).find('5')
            if l >= 0: s = s[:l]+'4'*(len(s)-l)
            return n+int(s,5)
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Dec 04 2024

A337141 Numbers having at least one 6 in their representation in base 7.

Original entry on oeis.org

6, 13, 20, 27, 34, 41, 42, 43, 44, 45, 46, 47, 48, 55, 62, 69, 76, 83, 90, 91, 92, 93, 94, 95, 96, 97, 104, 111, 118, 125, 132, 139, 140, 141, 142, 143, 144, 145, 146, 153, 160, 167, 174, 181, 188, 189, 190, 191, 192, 193, 194, 195, 202, 209, 216, 223, 230, 237, 238, 239, 240
Offset: 1

Views

Author

François Marques, Sep 20 2020

Keywords

Comments

Complementary sequence to A020657.

Examples

			33 is not in the sequence since it is 45_7 in base 7, but 34 is in the sequence since it is 46_7 in base 7.
		

Crossrefs

Cf. Numbers with at least one digit b-1 in base b: A074940 (b=3), A337250 (b=4), A337572 (b=5), A333656 (b=6), this sequence (b=7), A337239 (b=8), A338090 (b=9), A011539 (b=10), A095778 (b=11).
Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11).

Programs

  • Maple
    seq(`if`(numboccur(6, convert(n, base, 7))>0, n, NULL), n=0..100);
  • Mathematica
    Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 7 ], 6 ]>0)& ]
    Select[Range[300],DigitCount[#,7,6]>0&] (* Harvey P. Dale, Dec 23 2020 *)
  • PARI
    isok(m) = #select(x->(x==6), digits(m, 7)) >= 1;
    
  • Python
    from gmpy2 import digits
    def A337141(n):
        def f(x):
            l = (s:=digits(x,7)).find('6')
            if l >= 0: s = s[:l]+'5'*(len(s)-l)
            return n+int(s,6)
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Dec 04 2024

A337239 Numbers having at least one 7 in their representation in base 8.

Original entry on oeis.org

7, 15, 23, 31, 39, 47, 55, 56, 57, 58, 59, 60, 61, 62, 63, 71, 79, 87, 95, 103, 111, 119, 120, 121, 122, 123, 124, 125, 126, 127, 135, 143, 151, 159, 167, 175, 183, 184, 185, 186, 187, 188, 189, 190, 191, 199, 207, 215, 223, 231, 239, 247, 248, 249, 250, 251, 252, 253, 254, 255
Offset: 1

Views

Author

François Marques, Sep 20 2020

Keywords

Comments

Complementary sequence to A037474.

Examples

			54 is not in the sequence since it is 66_8 in base 8, but 55 is in the sequence since it is 67_8 in base 8.
		

Crossrefs

Cf. Numbers with at least one digit b-1 in base b : A074940 (b=3), A337250 (b=4), A337572 (b=5), A333656 (b=6), A337141 (b=7), this sequence (b=8), A338090 (b=9), A011539 (b=10), A095778 (b=11).
Cf. Numbers with no digit b-1 in base b: A005836 (b=3), A023717 (b=4), A020654 (b=5), A037465 (b=6), A020657 (b=7), A037474 (b=8), A037477 (b=9), A007095 (b=10), A171397 (b=11).

Programs

  • Maple
    seq(`if`(numboccur(7, convert(n, base, 8))>0, n, NULL), n=0..100);
  • Mathematica
    Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 8 ], 7 ]>0)& ]
  • PARI
    isok(m) = #select(x->(x==7), digits(m, 8)) >= 1;
    
  • Python
    def A337239(n):
        def f(x):
            s = oct(x)[2:]
            l = s.find('7')
            if l >= 0:
                s = s[:l]+'6'*(len(s)-l)
            return n+int(s,7)
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Dec 04 2024

A217402 Numbers starting with 9.

Original entry on oeis.org

9, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942
Offset: 1

Views

Author

Jeremy Gardiner, Oct 02 2012

Keywords

Comments

The lower and upper asymptotic densities of this sequence are 1/81 and 1/9, respectively. - Amiram Eldar, Feb 27 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], IntegerDigits[#][[1]] == 9 &] (* T. D. Noe, Oct 02 2012 *)
  • Python
    def A217402(n): return n+(80*10**(len(str(9*n-8))-1))//9 # Chai Wah Wu, Dec 07 2024

Formula

a(n) = n + (80*10^floor(log_10(9*n-8))-8)/9. - Alan Michael Gómez Calderón, May 17 2023

A293870 Numbers having '10' as substring of their digits.

Original entry on oeis.org

10, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 210, 310, 410, 510, 610, 710, 810, 910, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 10 of A292690 and A293869.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[1100],SequenceCount[IntegerDigits[#],{1,0}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 07 2019 *)
  • PARI
    is_A293870 = has(n, p=10, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293874 Numbers having '14' as substring of their digits.

Original entry on oeis.org

14, 114, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 214, 314, 414, 514, 614, 714, 814, 914, 1014, 1114, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1214, 1314, 1400, 1401, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 14 of A292690 and A293869.

Crossrefs

Cf. A292690, A293869. A121034 lists the terms which are divisible by 14.
Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "14"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293874 = has(n, p=14, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022

A293875 Numbers having '15' as substring of their digits.

Original entry on oeis.org

15, 115, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 215, 315, 415, 515, 615, 715, 815, 915, 1015, 1115, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1215, 1315, 1415, 1500, 1501, 1502, 1503, 1504, 1505, 1506, 1507, 1508, 1509, 1510, 1511, 1512, 1513, 1514, 1515
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2017

Keywords

Comments

Row 15 of A292690 and A293869. A121035 lists the terms which are divisible by 15.

Crossrefs

Cf. A121041, A121022, A121023, A121024, A121025, A121026, A121027, A121028, A121029, A121030, A121031, A121032, A121033, A121034, A121035, A121036, A121037, A121038, A121039, A121040: subsequences of the above, containing only multiples of the pattern p.

Programs

  • Mathematica
    Select[Range[2000], StringContainsQ[IntegerString[#], "15"] &] (* Paolo Xausa, Feb 25 2024 *)
  • PARI
    is_A293875 = has(n, p=15, m=10^#Str(p))=until(p>n\=10, n%m==p&&return(1))

Formula

a(n) ~ n. - Charles R Greathouse IV, Nov 02 2022
Previous Showing 21-30 of 55 results. Next