A126827 Ramanujan numbers (A000594) read mod 27.
1, 3, 9, 13, 24, 0, 23, 24, 0, 18, 12, 9, 8, 15, 0, 16, 18, 0, 11, 15, 18, 9, 15, 0, 7, 24, 0, 2, 3, 0, 17, 9, 0, 0, 12, 0, 20, 6, 18, 9, 6, 0, 14, 21, 0, 18, 21, 9, 21, 21, 0, 23, 0, 0, 18, 12, 18, 9, 24, 0, 23, 24, 0, 10, 3, 0, 8, 18, 0, 9, 18, 0, 11, 6, 9, 8, 6, 0, 5, 6, 0, 18, 3, 18, 0, 15, 0
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- George E. Andrews and Bruce C. Berndt, Ramanujan's Unpublished Manuscript on the Partition and Tau Functions, in: Ramanujan's Lost Notebook, Part III, Springer, New York, NY, 2012.
- R. P. Bambah and S. Chowla, Congruence properties of Ramanujan’s function tau(n), Bull. Amer. Math. Soc., Vol. 53 (1947), pp. 950-955.
- H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, pp. 1-55 of Modular Functions of One Variable III (Antwerp 1972), Lect. Notes Math., 350, 1973.
Programs
-
Mathematica
a[n_] := Mod[RamanujanTau[n], 27]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
-
PARI
a(n) = ramanujantau(n) % 27; \\ Amiram Eldar, Jan 05 2025
Formula
a(n) == n^2 * sigma_7(n) (mod 27) (Bambah and Chowla, 1947, eq. (16), p. 954; Andrews and Berndt, 2012, eq. (5.12.3), p. 114). - Amiram Eldar, Jan 05 2025