cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A126827 Ramanujan numbers (A000594) read mod 27.

Original entry on oeis.org

1, 3, 9, 13, 24, 0, 23, 24, 0, 18, 12, 9, 8, 15, 0, 16, 18, 0, 11, 15, 18, 9, 15, 0, 7, 24, 0, 2, 3, 0, 17, 9, 0, 0, 12, 0, 20, 6, 18, 9, 6, 0, 14, 21, 0, 18, 21, 9, 21, 21, 0, 23, 0, 0, 18, 12, 18, 9, 24, 0, 23, 24, 0, 10, 3, 0, 8, 18, 0, 9, 18, 0, 11, 6, 9, 8, 6, 0, 5, 6, 0, 18, 3, 18, 0, 15, 0
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 27]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 27; \\ Amiram Eldar, Jan 05 2025

Formula

a(n) == n^2 * sigma_7(n) (mod 27) (Bambah and Chowla, 1947, eq. (16), p. 954; Andrews and Berndt, 2012, eq. (5.12.3), p. 114). - Amiram Eldar, Jan 05 2025

A126828 Ramanujan numbers (A000594) read mod 81.

Original entry on oeis.org

1, 57, 9, 67, 51, 27, 23, 78, 0, 72, 12, 36, 35, 15, 54, 70, 45, 0, 38, 15, 45, 36, 69, 54, 61, 51, 0, 2, 3, 0, 17, 9, 27, 54, 39, 0, 74, 60, 72, 9, 6, 54, 41, 75, 0, 45, 75, 63, 21, 75, 0, 77, 54, 0, 45, 12, 18, 9, 24, 54, 50, 78, 0, 37, 3, 0, 62, 18, 54, 36, 18, 0, 65, 6, 63, 35, 33, 54
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Mod[RamanujanTau@ #, 81] & /@ Range@ 78 (* Michael De Vlieger, Apr 26 2016 *)
  • PARI
    a(n) = ramanujantau(n) % 81; \\ Amiram Eldar, Jan 05 2025

Formula

a(n) = (n^2+k)*sigma_7(n) with k=0 if gcd(n,3)=1 and k=9 if gcd(n,3)=2. - Michel Marcus, Apr 26 2016

A029817 Average theta series of odd unimodular lattices of dimension 16 (multiplied by 17).

Original entry on oeis.org

17, 32, 4064, 70016, 528352, 2500032, 8892032, 26353408, 67637216, 153125024, 317504064, 623589504, 1156034176, 2007952576, 3346882816, 5470070016, 8657571808, 13130837568, 19446878048, 28603895680, 41278028352, 57661256704, 79195867008, 108954414336, 147990228608
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    max = 20; s = 17 + 32*Sum[k^7*q^k/(1-(-q)^k), {k, 1, max}] + O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Dec 07 2015 *)
  • PARI
    a(n)=if(n<1,17*(n==0),32*sumdiv(n,d,d^7-2*if(d%4==2,(d/2)^7))) /* Michael Somos, Jul 16 2004 */

Formula

G.f.: 17 + 32 * Sum_{k >= 1} k^7*q^k/(1-(-q)^k).
a(n) = 32 * (-1)^n * (A013955(n) - 2 * A321811(2*n)) for n >= 1. - Amiram Eldar, Jan 07 2025
Previous Showing 31-33 of 33 results.