A288261
Coefficients in expansion of E_6/E_4.
Original entry on oeis.org
1, -744, 159768, -36866976, 8507424792, -1963211493744, 453039686271072, -104545516658693952, 24125403112135458840, -5567288717204029449672, 1284733088879405339418768, -296470902355240575283208928, 68414985730612787485819011168
Offset: 0
G.f.: 1 - 744*q + 159768*q^2 - 36866976*q^3 + 8507424792*q^4 - 1963211493744*q^5 + 453039686271072*q^6 + ...
From _Seiichi Manyama_, Jun 27 2017: (Start)
a(0) = j_0((-1+sqrt(3)*i)/2) = 1,_
a(1) = j_1((-1+sqrt(3)*i)/2) = -744 + 0^1 = -744,
a(2) = j_2((-1+sqrt(3)*i)/2) = 159768 - 1488*0^1 + 0^2 = 159768. (End)
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}])/(1 + 240*Sum[DivisorSigma[3, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 28 2017 *)
terms = 13; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[Ei[6]/Ei[4] + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
a[ n_] := With[{j = Series[1728 KleinInvariantJ[ Log[ Series[q, {q, 0, n + 1}]]/(2 Pi I)], {q, 0, n}]}, SeriesCoefficient[ -q D[j, q] / j, {q, 0, n}]]; (* Michael Somos, Aug 15 2018 *)
A289063
Coefficients in expansion of E_6^2/Product_{k>=1} (1-q^k)^24.
Original entry on oeis.org
1, -984, 196884, 21493760, 864299970, 20245856256, 333202640600, 4252023300096, 44656994071935, 401490886656000, 3176440229784420, 22567393309593600, 146211911499519294, 874313719685775360, 4872010111798142520, 25497827389410525184, 126142916465781843075
Offset: 0
G.f. = (1-q)^984 * (1-q^2)^286752 * (1-q^3)^102360024 * ...
G.f. = 1 - 984*q + 196884*q^2 + 21493760*q^3 + 864299970*q^4 + 20245856256*q^5 + ... .
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^2 / Product[(1 - x^k)^24, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
a[ n_] := SeriesCoefficient[ q Series[ 1728 (KleinInvariantJ[Log[q] / (2 Pi I)] - 1), {q, 0, n}], {q, 0, n}]; (* Michael Somos, Mar 31 2019 *)
-
{a(n) = my(A, U1, U2); if( n<0, 0, A = x * O(x^n); U1 = eta(x + A)^24; U2 = eta(x^2 + A)^24; polcoeff( (U1 - 512*x * U2)^2 * (U1 + 64*x * U2) / (U1^2 * U2), n))}; /* Michael Somos, Mar 31 2019 */
A299694
Coefficients in expansion of (E_4^3/E_6^2)^(1/144).
Original entry on oeis.org
1, 12, 1512, 813744, 281434656, 129501949608, 56296822560480, 26218237904433888, 12242575532254540032, 5850239653863742634172, 2820869122426120317439152, 1375631026432164061822527120, 675950202173640832786529615232
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1), this sequence (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/144) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A299696
Coefficients in expansion of (E_4^3/E_6^2)^(1/96).
Original entry on oeis.org
1, 18, 2322, 1234116, 430292646, 197681749128, 86165040337452, 40145493017336976, 18768723217958523222, 8975036477140737601806, 4331009172188712335053032, 2113419430011730408087143924, 1039122180212218474089489166980
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2), this sequence (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/96) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A299697
Coefficients in expansion of (E_4^3/E_6^2)^(1/72).
Original entry on oeis.org
1, 24, 3168, 1663776, 584685312, 268219092816, 117214929608832, 54637244971358016, 25574598700199847936, 12238100148358426410360, 5910293921259795914011968, 2885917219371433467109558368, 1419817980186833008095972357120
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3), this sequence (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/72) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A299698
Coefficients in expansion of (E_4^3/E_6^2)^(1/48).
Original entry on oeis.org
1, 36, 4968, 2551824, 910405152, 416585268216, 182967944992992, 85373023607994528, 40055910812083687680, 19194979975339075406388, 9284600439037161721276848, 4539375955473797523355108272, 2236041702620444573315950439808
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4), this sequence (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/48) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A299943
Coefficients in expansion of (E_4^3/E_6^2)^(1/36).
Original entry on oeis.org
1, 48, 6912, 3479616, 1259268096, 575044765344, 253777092387840, 118545813515338368, 55748828845833043968, 26753648919849657887472, 12960874757914028815661568, 6344939709971525751086888640, 3129285552537639403735326646272
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6), this sequence (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/36) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A299949
Coefficients in expansion of (E_4^3/E_6^2)^(1/32).
Original entry on oeis.org
1, 54, 7938, 3958956, 1442594502, 658201268952, 291148964582796, 136084851675471024, 64069809910723011222, 30769281599576554087722, 14917804015099613922436392, 7307669924831130556163175612, 3606311646826590340455185471940
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8), this sequence (k=9),
A289369 (k=12),
A299950 (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/32) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A299950
Coefficients in expansion of (E_4^3/E_6^2)^(1/18).
Original entry on oeis.org
1, 96, 16128, 7622784, 2900355072, 1319081479488, 592274331915264, 278167185566287104, 131973896384325992448, 63712327450686749464032, 31055582715009234813891072, 15282363171869402875165461888, 7574187854327285047920802652160
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12), this sequence (k=16),
A299951 (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/18) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
A299951
Coefficients in expansion of (E_4^3/E_6^2)^(1/16).
Original entry on oeis.org
1, 108, 18792, 8775216, 3375768096, 1535055129576, 691959629136096, 325485731190285792, 154751723387164258560, 74822912718767823810204, 36526619326785857845042608, 17998154668247683887778684176, 8931078840823632559970453020032
Offset: 0
(E_4^3/E_6^2)^(k/288):
A289365 (k=1),
A299694 (k=2),
A299696 (k=3),
A299697 (k=4),
A299698 (k=6),
A299943 (k=8),
A299949 (k=9),
A289369 (k=12),
A299950 (k=16), this sequence (k=18),
A299953 (k=24),
A299993 (k=32),
A299994 (k=36),
A300052 (k=48),
A300053 (k=72),
A300054 (k=96),
A300055 (k=144),
A289209 (k=288).
-
terms = 13;
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]^3/E6[x]^2)^(1/16) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *)
Comments