cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A275613 Restricted Perrin pseudoprimes (Grantham definition).

Original entry on oeis.org

27664033, 46672291, 102690901, 130944133, 517697641, 545670533, 801123451, 855073301, 970355431, 1235188597, 3273820903, 3841324339, 3924969689, 4982970241, 5130186571, 5242624003, 6335800411, 7045248121, 7279379941, 7825642579
Offset: 1

Views

Author

Dana Jacobsen, Aug 03 2016

Keywords

Comments

These are odd composites which have an acceptable signature mod n for the Perrin sequence (A001608), using the definition given by Arno (1991). Grantham (2000) gives a generalized definition for cubics, with the Perrin sequence being the parameters r=0, s=-1.
This is similar to the Adams and Shanks (1982) test, with three exceptions: (1) pseudoprimes must be odd composites, (2) S-signatures with (-23|n) = 0 are not allowed, and (3) the quadratic form test for I-signatures is removed.
Below 5*10^13, there are no even pseudoprimes to the minimal restricted test (A018187), hence the first difference is not seen. Also below 5*10^13, there are no pseudoprimes with an I-signature congruence, so the third difference is also not seen. There are pseudoprimes divisible by 23 to the Adams/Shanks signature test (A275612), which are not pseudoprimes to this test.

Crossrefs

Cf. A001608 (Perrin sequence), A013998 (unrestricted Perrin pseudoprimes), A018187 (minimal restricted Perrin pseudoprimes), A275612 (Adams/Shanks restricted Perrin pseudoprimes).

Programs

  • PARI
    perrin3(n) = {
      my(M,L,S,j,A,B,C,D);
      if(n==2||n==23,return(1));
      if(n%2==0,return(0));
      M=Mod( [0,1,0; 0,0,1; 1,1,0], n)^n;
      L=Mod( [0,1,0; 0,0,1; 1,0,-1], n)^n;
      S=[ 3*L[3,2]-L[3,3],   3*L[2,2]-L[2,3],   3*L[1,2]-L[1,3], \
          3*M[3,1]+2*M[3,3], 3*M[1,1]+2*M[1,3], 3*M[2,1]+2*M[2,3] ];
      if (S[5] != 0 || S[2] != n-1,return(0));
      j = kronecker(-23,n);
      if (j == 0,return(0));
      if (j == -1, B=S[3];A=1+3*B-B^2;C=3*B^2-2; if(S[1]==A && S[3]==B && S[4]==B && S[6] == C && B != 3 && B^3-B==1, return(1), return(0)));
      if (S[1] == 1 && S[3] == 3 && S[4] == 3 && S[6] == 2, return(1));
      if (S[1] == 0 && S[6] == n-1 && S[3] != S[4] && S[3]+S[4] == n-3 && (S[3]-S[4])^2 == Mod(-23,n), return(1));
      return(0);
    }
  • Perl
    use ntheory ":all"; foroddcomposites { say if is_perrin_pseudoprime($,3); } 1e8; # _Dana Jacobsen, Aug 03 2016
    

A294028 Composite numbers k such that k | 1 - A078712(k).

Original entry on oeis.org

49, 77, 121, 203, 319, 413, 679, 721, 749, 841, 869, 1057, 1211, 1351, 1393, 1397, 1441, 1639, 1687, 1757, 1769, 1883, 2167, 2189, 2219, 2359, 2429, 2581, 2651, 2761, 2959, 3031, 3073, 3101, 3227, 3409, 3437, 3485, 3487, 3563, 3899, 4037, 4039, 4109, 4279
Offset: 1

Views

Author

Amiram Eldar, Oct 22 2017

Keywords

Comments

A018187 (restricted Perrin pseudoprimes) is the intersection of A013998 (unrestricted Perrin pseudoprimes) with this sequence.

Crossrefs

Programs

  • Mathematica
    a={}; b=-Drop[CoefficientList[Series[(2x+3)/(x^3-x-1), {x, 0, 10^4}], x] ,1];
    Do[If[!PrimeQ[k]&&Divisible[b[[k]]+1,k],AppendTo[a,k]],{k, 2, Length[b]}]; a

A364701 Pseudoprimes corresponding to a Perrin-like primality test.

Original entry on oeis.org

1531398, 114009582, 940084647, 4206644978, 7962908038, 20293639091, 41947594698
Offset: 1

Views

Author

Robert Dougherty-Bliss, Aug 03 2023

Keywords

Comments

The sequence b(n) defined by the generating function (3*x^4+5*x^2+6*x-7)/(4*x^7+x^4+x^2+x-1) has the property that b(p) == 1 (mod p) if p is a prime. A pseudoprime for b(n) is a composite number k such that b(k) == 1 (mod k).
The first seven pseudoprimes are the only ones up to 10^12.

Examples

			The value of b(1531398) is a 399290-digit number which is congruent to 1 modulo 1531398 = 2 * 3 * 11 * 23203.
		

Crossrefs

b(n) is A362923.

A306634 Numbers k such that A215339(6*k+2) = 0.

Original entry on oeis.org

0, 2755452, 4570452, 123725995972
Offset: 1

Views

Author

Seiichi Manyama, Mar 02 2019

Keywords

Comments

Numbers k such that b(k) is an integer, where b(n) = Sum_{k=0..n} (2*n+k)!/((2*n-2*k)!*(3*k+1)!) (= A001608(6*n+2)/(6*n+2)).

Examples

			n |       b(n)
--+--------------------------
0 |       1    (=       2/2)
1 |       5/4  (=      10/8)
2 |      51/14
3 |     277/20
4 |    1497/26
5 |    4045/16 (=    8090/32)
6 |   43721/38
7 |  118141/22 (=  236282/44)
8 |  638471/25 (= 1276942/50)
9 | 6900995/56
		

Crossrefs

A371805 Composite numbers k that divide A001644(k) - 1.

Original entry on oeis.org

182, 25201, 54289, 63618, 194390, 750890, 804055, 1889041, 2487941, 3542533, 3761251, 6829689, 12032021, 12649337, 18002881
Offset: 1

Views

Author

Robert FERREOL, Apr 06 2024

Keywords

Comments

If k is prime, k divides A001644(k) - 1; and since A001644(k) satisfies a tribonacci recurrence, these numbers could be called tribonacci pseudoprimes.

Examples

			(A001644(182)-1)/182 = 8056145960961609628091266244940745410646318417.
		

Crossrefs

Cf. A001644.
Cf. A005845 (composite k that divide Lucas(k) - 1).
Cf. A013998 (composite k that divide Perrin(k) - 1).

Programs

  • Maple
    A001644:=proc(n) option remember: if n=0 then 3 elif n=1 then 1 elif n=2 then 3 else A001644(n-1)+A001644(n-2)+A001644(n-3) fi end:
    test:=n->A001644(n) mod n = 1:select(test and not isprime, [seq(n, n=1..100000)]);
  • Mathematica
    seq[kmax_] := Module[{x = 1, y = 3, z = 7, s = {}, t}, Do[t = x + y + z; If[Mod[t, k] == 1 && CompositeQ[k], AppendTo[s, k]]; x = y; y = z; z = t, {k, 4, kmax}]; s]; seq[200000] (* Amiram Eldar, Apr 06 2024 *)
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        t0, t1, t2 = 3, 1, 3
        for k in count(1):
            t0, t1, t2 = t1, t2, t0+t1+t2
            if k > 1 and not isprime(k) and (t0-1)%k == 0:
                yield k
    print(list(islice(agen(), 5))) # Michael S. Branicky, Apr 07 2024

Extensions

a(13)-a(15) from Amiram Eldar, Apr 07 2024
Previous Showing 11-15 of 15 results.