cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-63 of 63 results.

A306627 Primes of the form (p + prime(p))/2 with prime p.

Original entry on oeis.org

43, 53, 79, 97, 199, 257, 347, 1103, 1187, 1303, 1367, 1753, 2029, 2351, 2593, 2647, 3181, 3253, 4663, 4787, 4903, 4919, 5573, 6091, 7079, 7331, 7369, 7457, 8101, 8527, 8543, 10159, 11549, 12647, 13151, 14699, 15031, 15559, 15679, 15881, 15889, 16661, 17099, 17881, 18251, 18959, 19219, 20399, 20431
Offset: 1

Views

Author

Zak Seidov, Mar 01 2019

Keywords

Comments

Indices k of p's are 8, 9, 11, 12, 19, 23, 28, 62, 64, 68, 71, 85, 95, 104, 114, 115, 131, 134, 175, 178, 181, 182, 200, 216, 240, 246, 247, 250, 266, 276, 277, 316, 346, 372, 382.
And some of k's themselves are prime: 11, 19, 23, 71, 131, 181, 277, 421, 541, 601, 673, 751, 881, 937. See link to Fernandez.

Examples

			43 = (p + prime(p))/2 for p = 19 (prime),
53 = (p + prime(p))/2 for p = 23 (prime).
		

Crossrefs

Cf. A014688 (n-th prime + n).

Programs

  • PARI
    lista(nn) = forprime(p=3,nn,k=(prime(p)+p)/2;if(isprime(k),print1(k, ", "))) \\ Jinyuan Wang, Mar 01 2019

A349779 Pairs of integers i,j such that i+prime(i) and j+prime(j) are a pair of amicable numbers.

Original entry on oeis.org

41, 51, 99525, 104283, 280899, 295869, 18378754, 21937204, 52084243, 53107499, 163148785, 166346021, 179162279, 183252051, 212063283, 244033955, 3731366783, 4226663091, 7134801326, 7818930716, 10469380661, 12074408463, 12445587194, 12667334246, 16055012737, 17258948163
Offset: 1

Views

Author

Michel Marcus, Nov 30 2021

Keywords

Examples

			41 + prime(41) = 41 + 179 = 220, 51 + prime(51) = 51 + 233 = 284, and (220, 284) is an amicable pair.
		

Crossrefs

Programs

  • Python
    from sympy import nextprime, divisor_sigma
    d = dict()
    j, p = 0, 0
    while True:
        j, p = j+1, nextprime(p)
        n = j+p
        a = divisor_sigma(n)-n
        d[(n, a)] = j
        if (a, n) in d:
            print(d[(a, n)], j) # Martin Ehrenstein, Dec 02 2021

Extensions

a(7)-a(8) from Amiram Eldar, Nov 30 2021
a(9)-a(16) from Michel Marcus, Dec 01 2021
a(17)-a(26) from Martin Ehrenstein, Dec 03 2021

A365591 Numbers k such that Sum_{i=1..k} prime(i) + i is prime.

Original entry on oeis.org

1, 5, 8, 17, 28, 33, 40, 41, 49, 52, 64, 65, 69, 77, 92, 93, 108, 109, 120, 121, 136, 137, 140, 144, 165, 200, 201, 204, 225, 229, 265, 269, 272, 280, 292, 312, 325, 332, 337, 344, 356, 361, 369, 376, 388, 457, 464, 473, 480, 529, 541, 548, 553, 556, 573, 577
Offset: 1

Views

Author

Saish S. Kambali, Sep 10 2023

Keywords

Comments

Numbers k such that A000217(k) + A007504(k) is prime. - Robert Israel, Sep 10 2023

Examples

			2+1 = 3, which is prime, so 1 is a term.
2+1 + 3+2 + 5+3 + 7+4 + 11+5 = 43, which is prime, so 5 is a term.
		

Crossrefs

Programs

  • Maple
    P:= [seq(ithprime(i),i=1..1000)]:
    S:= ListTools:-PartialSums(P):
    select(i -> isprime(S[i]+i*(i+1)/2),[$1..1000]); # Robert Israel, Sep 10 2023
  • Mathematica
    With[{m = 600}, Position[Accumulate[Range[m] + Prime[Range[m]]], ?PrimeQ] // Flatten] (* _Amiram Eldar, Sep 10 2023 *)
  • PARI
    isok(k) = isprime(sum(i=1, k, i+prime(i))); \\ Michel Marcus, Sep 14 2023
Previous Showing 61-63 of 63 results.