cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A225782 Numbers such that every permutation of digits of n is divisible by sum of digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 102, 108, 111, 117, 120, 126, 135, 144, 153, 162, 171, 180, 200, 201, 204, 207, 210, 216, 222, 225, 234, 240, 243, 252, 261, 270, 288
Offset: 1

Views

Author

Jayanta Basu, May 15 2013

Keywords

Comments

Subsets of both A005349 and A225780. First member of A225780 missing here is 209. Next one is 308.
From Robert Israel, May 11 2017: (Start)
Numbers n such that n is divisible by A007953(n) and 9*d (mod A007953(n)) are all equal for all digits d of n.
If n is in the intersection of this sequence and A011540, then so is 10*n. In particular, the sequence is infinite.
If n is in the sequence and A007953(n) > 81, then n = d*A002275(r) where 1 <= d <= 9 and r is in A014950. (End)

Examples

			126 is a member since 126, 162, 216, 261, 612 and 621 are all divisible by (1+2+6)=9. 209 is not a member since 29 is not divisible by (2+9)=11.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local s,L;
         L:= convert(n,base,10);
         s:= convert(L,`+`);
         n mod s = 0 and nops({seq(9*d mod s, d = L)}) = 1
    end proc:
    select(filter, [$1..1000]); # Robert Israel, May 11 2017
  • Mathematica
    d[n_]:=IntegerDigits[n]; sod[n_]:=Total[d[n]]; t={}; Do[t1=Table[FromDigits[k],{k,Permutations[d[n]]}]; If[Select[t1,Mod[#,sod[n]]!=0 &]=={},AppendTo[t,n]],{n,288}]; t

A273906 Primes equal to the concatenation of two nonzero palindromic numbers.

Original entry on oeis.org

11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 113, 199, 211, 223, 227, 229, 233, 277, 311, 331, 337, 433, 443, 449, 499, 557, 577, 599, 661, 677, 733, 773, 811, 877, 881, 883, 887, 911, 977, 991, 997, 1013, 1019, 1117, 1151, 1171, 1181
Offset: 1

Views

Author

Giovanni Teofilatto, Jun 03 2016

Keywords

Comments

The only palindrome in this sequence below 10^9 is 11 (per request of Giovanni Teofilatto). A004022 is a subsequence. - David A. Corneth, Jun 10 2016
If we have a concatenation of two palindromes A = A', B = B' which is palindromic, concat(A,B) =: A.B = (A.B)' = B'.A' = B.A, then A*(10^LB-1) = B*(10^LA-1) (LX = length of X) <=> A*R(LB) = B*R(LA), where R(n) = (10^n-1)/9. To have A.B prime we also must have gcd(A,B) = 1, thus A | R(LA) and B | R(LB). Such numbers are listed in A249647 (not A014950), the only palindromes there are of the form 1...1, 3...3 or 9...9. Thus the only palindromic terms in this sequence A273906 are the repunit primes A004022. - M. F. Hasler, Jun 10 2016

Examples

			The prime 1013 is a term since 101 and 3 are palindromic.
The prime 101 is not a term, since it is not a concatenation of two nonzero palindromic numbers.
The prime 131 is not a term because it is not a concatenation of two nonzero palindromic numbers.
		

Crossrefs

Programs

  • Mathematica
    Take[#, 62] &@ Select[Sort@ Map[FromDigits@ Flatten@ IntegerDigits@ # &, Tuples[#, 2]], PrimeQ] &@ Select[Range[10^3], Reverse@ # == # &@ IntegerDigits@ # &] (* Michael De Vlieger, Jun 03 2016 *)
    nxtPal[n_]:=With[{c=Join[{2},Flatten[Table[{10*10^d,11*10^d},{d,0,10}]]]},SelectFirst[n+c,PalindromeQ]]; Take[Join[{11},Select[ #[[1]]*10^IntegerLength[ #[[2]]]+#[[2]]&/@ Flatten[{#,Reverse[#]}&/@Subsets[Join[Range[8],NestList[nxtPal,9,100]],{2}],1],PrimeQ]//Union],60] (* Harvey P. Dale, Dec 08 2024 *)
  • PARI
    \\ See program link from David A. Corneth, Jun 10 2016.

Formula

a(n) = A096489(n+1), n=1..21. - R. J. Mathar, Jun 12 2016. (This is a pure accident, I think, since A096489 is a finite sequence. - N. J. A. Sloane, Jun 12 2016)

Extensions

More terms from Michael De Vlieger, Jun 03 2016

A343682 Zuckerman numbers which when divided by the product of their digits, give a quotient which is a Niven (Harshad) number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 24, 36, 111, 128, 135, 144, 175, 216, 315, 384, 432, 672, 735, 1296, 1575, 2916, 11115, 11232, 11664, 12132, 12288, 12312, 13212, 13824, 14112, 16416, 22176, 23112, 23328, 26112, 27216, 31212, 32832, 34272, 34992, 42624, 72128, 77175
Offset: 1

Views

Author

Bernard Schott, Apr 26 2021

Keywords

Comments

Repunit R(k) is a term iff k divides R(k) (A014950).

Examples

			36 is a Zuckerman number as 36/(3*6) = 2, 2/2 = 1 that is a Niven number, and 36 is a term.
315 is a Zuckerman number as 315/(3*1*5) = 21, 21/(2+1) = 7 that is a Niven number, and 315 is a term.
		

Crossrefs

Programs

  • Mathematica
    nivenQ[n_] := IntegerQ[n] && (sum = Plus @@ IntegerDigits[n]) > 0 && Divisible[n, sum]; Select[Range[10^5], (prod = Times @@ IntegerDigits[#]) > 0 && nivenQ[# / prod] &] (* Amiram Eldar, Apr 26 2021 *)
  • PARI
    isn(n) = !(n%sumdigits(n)); \\ A005349
    isz(n) = my(p=vecprod(digits(n))); p && !(n % p); \\ A007602
    isok(n) = isz(n) && isn(n/vecprod(digits(n))); \\ Michel Marcus, Apr 26 2021

Extensions

More terms from Michel Marcus, Apr 26 2021

A375590 Numbers m such that there exists a nonnegative integer k for which the concatenation of m, m-1, ..., m-k is an m-digit number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 150, 153, 156, 159, 162, 165, 168
Offset: 1

Views

Author

Nicholas M. R. Frieler, Aug 19 2024

Keywords

Comments

Let d be the number of digits of m (in base 10). One can show that the number m is a member of this sequence if and only if:
(a) m is divisible by d and m >= 10^(d-1) * d/(d+1)
or
(b) 10^(d-1) == 1 (mod d-1) (i.e., d-1 is a term of A014950) and m < 10^d * d/(d+1).

Examples

			13 is a term because the concatenation of 13, 12, ..., 5 is a 13-digit number.
100 is not a term because the concatenation of 100, 99, ..., 52 is a 99-digit number and concatenating this number with 51 yields a 101-digit number.
		

Crossrefs

Cf. A375461 (self-consecutive).

Programs

  • Mathematica
    SelfDownwardConsecutiveQ[n_] :=
     Module[{len = Length@IntegerDigits[n], num, c = 1, numDigits = 0},
      numDigits = len*Ceiling[n + 1 - 10^(len - 1)];
    If[numDigits >= n, Return[Mod[n, len] == 0]];
    num = n - Ceiling[n + 1 - 10^(len - 1)];
    While[numDigits < n + 1,
      If[(len - c)*Ceiling[num + 1 - 10^(len - c - 1)] >= n - numDigits,
       Return[Mod[n - numDigits, len - c] == 0],
       numDigits += (len - c)*Ceiling[num + 1 - 10^(len - c - 1)]
        ];
      num -= Ceiling[num + 1 - 10^(len - c - 1)];
      c++;
       ]
     ]
    Select[Range[1000], SelfDownwardConsecutiveQ]

A334929 Positive integers k such that there exists a positive integer m consisting of k identical digits and such that m is a multiple of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 18, 21, 22, 24, 27, 36, 42, 44, 45, 54, 63, 66, 72, 78, 81, 84, 88, 108, 111, 126, 132, 135, 156, 162, 168, 189, 198, 205, 216, 222, 234, 242, 243, 252, 264, 294, 312, 324, 333, 342, 378, 396, 404, 405, 444, 462, 465, 468, 484, 486
Offset: 1

Views

Author

Reiner Moewald, May 16 2020

Keywords

Comments

For k=3^t, t>=1 you can always find numbers m.

Examples

			12 is a term since 444444444444 = 12*37037037037.
		

Crossrefs

Cf. A014950.

Programs

  • Mathematica
    ok[n_] := AnyTrue[(10^n - 1)/9 Range@9, Mod[#, n] == 0 &]; Select[ Range[486], ok] (* Giovanni Resta, May 24 2020 *)
  • Python
    t = "1"
    list = [1]
    for i in range(1, 1000):
        t = "1" + t
        m = int(t)
        weiter = 0
        for k in range(1, 10):
            if k * m % (i + 1) == 0:
                weiter = 1
        if weiter == 1:
            list.append(i + 1)
    print(list)

A345467 Ratios R(k)/k for which R(k) / k is an integer, where R(k) = A002275(k) is a repunit.

Original entry on oeis.org

1, 37, 12345679, 4115226337448559670781893, 1371742112482853223593964334705075445816186556927297668038408779149519890260631
Offset: 1

Views

Author

Thomas T. Burgess, Jun 20 2021

Keywords

Comments

This is the sequence where fractions of repunits (A002275) and their number of digits in base 10 R(k) / k are integers, where k is A014950(n). This happens for all k of the form k=3^m; this is true because R(3k) / R(k) = 10^(2k) + 10^n*k + 1, which is divisible by 3. Therefore R(3^m) is divisible by 3^m by induction on m. There are additional solutions in A014950.

Examples

			For n = 2, a(2) = 111/3 = 37. For n = 3, a(3) = 111111111/9 = 12345679.
		

Crossrefs

Programs

  • Mathematica
    s = Join[{1}, Select[Range[3, 81, 6], PowerMod[10, #, #] == 1 &]]; Table[(10^n - 1)/(9*n), {n, s}] (* Amiram Eldar, Jun 20 2021 *)
  • Python
    [(10**n-1)//(9*n) for n in range(1, 300) if not (10**n-1)//9 % n]

Formula

a(n) = A002275(A014950(n))/A014950(n).

A377228 Repdigits which are also Harshad numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 111, 222, 333, 444, 555, 666, 777, 888, 999, 111111111, 222222222, 333333333, 444444444, 555555555, 666666666, 777777777, 888888888, 999999999, 111111111111111111111111111, 222222222222222222222222222, 333333333333333333333333333, 444444444444444444444444444
Offset: 1

Views

Author

John Bibby, Oct 20 2024

Keywords

Examples

			999 is in the sequence as it is a repdigit (all digits are equal (in base 10)) and 999 is divisible by its sum of digits; 9 + 9 + 9 = 27 is a divisors of 999. - _David A. Corneth_, Oct 20 2024
		

Crossrefs

Intersection of A005349 and A010785.
Cf. A014950.

Programs

  • Mathematica
    Select[Union[FromDigits/@Flatten[Table[PadRight[{}, i, n], {n, 9}, {i, 27}], 1]],Divisible[#,DigitSum[#]]&] (* James C. McMahon, Jan 07 2025 *)
  • PARI
    repd(n) = 10^((n+8)\9)\9*((n-1)%9+1); \\ A010785
    lista(nn) = select(x->(x%sumdigits(x)==0), vector(nn, k, repd(k))); \\ Michel Marcus, Jan 07 2025

Extensions

More terms from David A. Corneth, Oct 20 2024
Previous Showing 21-27 of 27 results.