A015422 Gaussian binomial coefficient [ n,11 ] for q=-13.
1, -1664148937320, 3000174326048697741925710, -5374347381421937558314402513609688760, 9632029764916740618771445568833182996026908640493, -17262095767026556801586191040816999767731925288888540910160480
Offset: 11
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
Crossrefs
Programs
-
Magma
r:=11; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
-
Mathematica
Table[QBinomial[n, 11, -13], {n, 11, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
-
PARI
A015422(n,r=11,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
Sage
[gaussian_binomial(n,11,-13) for n in range(11,16)] # Zerinvary Lajos, May 28 2009
Formula
a(n) = Product_{i=1..11} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012