cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 71 results. Next

A372118 Square array A(n, k) = ((k+2)^(n+2) - 2 * (k+1)^(n+2) + k^(n+2))/2 for k, n >= 0 read by ascending antidiagonals.

Original entry on oeis.org

1, 3, 1, 7, 6, 1, 15, 25, 9, 1, 31, 90, 55, 12, 1, 63, 301, 285, 97, 15, 1, 127, 966, 1351, 660, 151, 18, 1, 255, 3025, 6069, 4081, 1275, 217, 21, 1, 511, 9330, 26335, 23772, 9751, 2190, 295, 24, 1, 1023, 28501, 111645, 133057, 70035, 19981, 3465, 385, 27, 1
Offset: 0

Views

Author

Werner Schulte, Apr 19 2024

Keywords

Comments

Depending on some fixed integer m >= 0 we define a family of square arrays A(m; n, k) = (Sum_{i=0..m} (-1)^i * binomial(m, i) * (k + m - i)^(n+m)) / m! for k, n >= 0. Special cases are: A004248 (m=0), A343237 (m=1) and this array (m=2). The A(m; n, k) satisfy: A(m; n, k) = (k+m) * A(m; n-1, k) + A(m-1; n, k) with initial values A(0; n, k) = k^n and A(m; 0, k) = 1.
Further properties are conjectures:
(1) O.g.f. of column k is Prod_{i=k..k+m} 1 / (1 - i * t);
(2) E.g.f. of row n is exp(x) * (Sum_{k=0..n} binomial(k+m, m) * A048993(n+m, k+m) * x^k);
(3) The LU decompositions of these arrays are given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(m; n, k) = A048993(n+m, k+m) * (k+m)! / m!, i.e., A(m; n, k) = Sum_{i=0..k} L(m; n, i) * binomial(k, i).
The three conjectures are true, see links. - Sela Fried, Jul 07 2024

Examples

			Square array A(n, k) starts:
n\k :    0     1       2       3        4         5         6         7
=======================================================================
  0 :    1     1       1       1        1         1         1         1
  1 :    3     6       9      12       15        18        21        24
  2 :    7    25      55      97      151       217       295       385
  3 :   15    90     285     660     1275      2190      3465      5160
  4 :   31   301    1351    4081     9751     19981     36751     62401
  5 :   63   966    6069   23772    70035    170898    365001    706104
  6 :  127  3025   26335  133057   481951   1398097   3463615   7628545
  7 :  255  9330  111645  724260  3216795  11075670  31794105  79669320
  etc.
		

Crossrefs

Rows: A000012 (n=0), A008585 (n=1), A227776 (n=2).
Columns: A000225 (k=0), A000392 (k=1), A016269 (k=2), A016753 (k=3), A016103 (k=4), A019757 (k=5), A020570 (k=6), A020782 (k=7).
Main diagonal: A281596(n+2).

Programs

  • Mathematica
    A372118[n_, k_] := ((k+2)^(n+2) - 2*(k+1)^(n+2) + k^(n+2))/2;
    Table[A372118[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jul 10 2024 *)
  • PARI
    A(n, k) = ((k+2)^(n+2) - 2 * (k+1)^(n+2) + k^(n+2))/2

Formula

A(n, k) = (k+2) * A(n-1, k) + (k+1)^(n+1) - k^(n+1) for n > 0.
Conjectures:
(1) O.g.f. of column k is Prod_{i=k..k+2} 1 / (1 - i * t);
(2) E.g.f. of row n is exp(x) * (Sum_{k=0..n} binomial(k+2, 2) * A048993(n+2, k+2) * x^k);
(3) The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(n, k) = A048993(n+2, k+2) * (k+2)! / 2!, i.e., A(n, k) = Sum_{i=0..k} L(n, i) * binomial(k, i).
The three conjectures are true. See comments. - Sela Fried, Jul 09 2024

A373398 Triangle read by rows: T(n, k) = number of k-element subobjects of an n-element set in the category of relations, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 9, 1, 1, 15, 55, 25, 1, 1, 31, 285, 395, 65, 1, 1, 63, 1351, 5045, 2555, 161, 1, 1, 127, 6069, 56931, 78685, 15211, 385, 1, 1, 255, 26335, 592725, 2091171, 1101021, 85099, 897, 1, 1, 511, 111645, 5834515, 50334765, 67590387, 14169405, 454315, 2049, 1
Offset: 0

Views

Author

Keith J. Bauer, Jun 03 2024

Keywords

Comments

A subobject of an object A is an object S equipped with a monomorphism S -> A, up to isomorphism in the category of objects equipped with such morphisms. Objects in the category of relations are sets, morphisms are relations, and composition is relation composition.
Objects and morphisms in Rel can be re-characterized as free complete join-semilattices (the power set of a set with join being union) and join-equivariant maps, respectively. Therefore, subobjects in Rel can be re-characterized as injective n X k matrices of truth values. Because every injective matrix of truth values can be shown to have pivots, subobjects can be counted via Schubert cells and this results in a family of generating functions describing the entire triangle. Short proof: if a monomorphism does not have a row consisting of all 0's except for one column in particular, then consider where it sends the column vector containing all 1's and the column vector containing all 1's but with the corresponding row flipped to 0. It cannot possibly send these vectors to two different vectors. (Here 0 and 1 represent false and true, respectively. Note that addition is logical "or" and multiplication is logical "and".)
Because Rel is self-dual, this sequence also counts quotient objects.
Entries not in the triangle's range are equal to 0 because there is no monomorphism from a k-element set to an n-element set when k > n.
All monomorphisms in Rel are regular, i.e., the equalizer of a pair of morphisms. In some categories, subobjects are taken to only be regular monomorphisms, or are at least distinguished; for example, a normal subgroup is (the domain of) a regular monomorphism in the category of groups. Because all monomorphisms in Rel are regular, there is no ambiguity in what a subobject in Rel is. See the link for a proof of this fact.

Examples

			There are 9 2-element subobjects of a 3-element set in Rel. As truth matrices:
  [1 0] [1 0] [0 0] [1 0] [0 1] [0 1] [1 1] [1 0] [1 0]
  [0 1] [0 0] [1 0] [0 1] [1 0] [0 1] [1 0] [1 1] [0 1]
  [0 0] [0 1] [0 1] [0 1] [0 1] [1 0] [0 1] [0 1] [1 1]
To convert to relations, note that each entry corresponds to whether
  [(1,1) (2,1)]
  [(1,2) (2,2)]
  [(1,3) (2,3)]
is in the relation.
Triangle starts:
  1,
  1,   1,
  1,   3,      1,
  1,   7,      9,       1,
  1,  15,     55,      25,        1,
  1,  31,    285,     395,       65,        1,
  1,  63,   1351,    5045,     2555,      161,        1,
  1, 127,   6069,   56931,    78685,    15211,      385,      1,
  1, 255,  26335,  592725,  2091171,  1101021,    85099,    897,    1,
  1, 511, 111645, 5834515, 50334765, 67590387, 14169405, 454315, 2049, 1,
  ...
		

Crossrefs

T(n, 0) = A000012(n).
T(n, 1) = A000225(n).
T(n, 2) = A016269(n - 2).
T(n, 3) = A028130(n - 3).
T(n, n) = A000012(n).
T(n, n - 1) = A002064(n - 1).
Analogous sequence in the category Set: A007318.

Programs

  • Mathematica
    T[n_,k_]:=SeriesCoefficient[(1 / (1 - 2^k* x)) * Product[1 / (1 - (2^k - 2^i) * x),{i,0,k-1}],{x,0,n}]; Table[T[n-k,k],{n,0,9},{k,0,n}]//Flatten (* Stefano Spezia, Jun 04 2024 *)
  • Sage
    dim = 10
    def getGF(n):
        R. = PowerSeriesRing(ZZ, 'x', dim)
        f = 1 / (1 - 2^n * x)
        for k in range(n):
            f = f / (1 - (2^n - 2^k) * x)
        return f
    for n in range(dim):
        print([getGF(k).list()[n - k] for k in range(n + 1)])

Formula

G.f.: Sum_{n>=0} T(n + k, k) * x^n = (1 / (1 - 2^k * x)) * Product_{i=0..k-1} (1 / (1 - (2^k - 2^i) * x)).

A068518 The sequence S(n,-3,1,1), where S(n,k,t,q) is defined by Sum_{j=0..n} binomial(n+q,j)^t * B(j,k) and B(j,k) is the j-th k-poly-Bernoulli number.

Original entry on oeis.org

1, 17, 163, 1229, 8131, 49637, 287323, 1602989, 8710291, 46423157, 243875083, 1267233149, 6530064451, 33433332677, 170320976443, 864288997709, 4372382138611, 22066261554197, 111150518391403, 559034856752669, 2808319611460771, 14094228176783717
Offset: 0

Views

Author

Vesselin Dimitrov (avding(AT)hotmail.com), Mar 18 2002

Keywords

Comments

The sequence S(n,-2,1,1), n>=0, is A016269. It would be interesting to study the more general sequences S(r,-m,1,1), r=0,1,2,... for fixed m; here we consider the special cases m=3 and m=2. Finally, one can use the sum S(r,k,t,q) to discover certain recurrence relations involving poly-Bernoulli numbers. Let us note that the well known recurrence of the classical Bernoulli numbers yields S(r,1,1,1)=r+1. Let us also note that numerical experimentation suggests that S(r,-2,1,1)=S(r,-3,0,q).

Formula

a(n) = S(n, -3, 1, 1) = Sum_{k=0..n} ( binomial(n+1, k) * (-1)^k * Sum_{j=0..k} ((j+1)^3 * Sum_{i=0..j} (-1)^i * binomial(j, i) * i^k) ). [Corrected by Sean A. Irvine, Feb 21 2024]

Extensions

More terms from Sean A. Irvine, Feb 21 2024

A069397 Half the number of 4 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.

Original entry on oeis.org

1, 67, 2427, 66579, 1565371, 33438451, 669776139, 12817737731, 237180629275, 4277806868563, 75628309151275, 1315968756706339, 22606389934281147, 384286142618740851, 6475978445076745163
Offset: 2

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A016269, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

A069398 Half the number of 5 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.

Original entry on oeis.org

1, 177, 15253, 944157, 48602431, 2230830597, 94819936513, 3816886269599
Offset: 2

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A016269, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

A069399 Half the number of 6 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.

Original entry on oeis.org

1, 465, 94847, 13182673, 1478456575
Offset: 2

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A016269, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

A069400 Half the number of 7 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.

Original entry on oeis.org

1, 1219, 587031, 182702967, 44515781333
Offset: 2

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A016269, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

A069401 Half the number of 8 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.

Original entry on oeis.org

1, 3193, 3625675, 2522968803
Offset: 2

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A016269, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

A069402 Half the number of 9 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.

Original entry on oeis.org

1, 8361, 22372413, 34777826197
Offset: 2

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A016269, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

A069406 Half the number of n X 6 binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.

Original entry on oeis.org

31, 1351, 48329, 1565371, 48602431, 1478456575, 44515781333
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A016269, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.
Previous Showing 51-60 of 71 results. Next