A372118
Square array A(n, k) = ((k+2)^(n+2) - 2 * (k+1)^(n+2) + k^(n+2))/2 for k, n >= 0 read by ascending antidiagonals.
Original entry on oeis.org
1, 3, 1, 7, 6, 1, 15, 25, 9, 1, 31, 90, 55, 12, 1, 63, 301, 285, 97, 15, 1, 127, 966, 1351, 660, 151, 18, 1, 255, 3025, 6069, 4081, 1275, 217, 21, 1, 511, 9330, 26335, 23772, 9751, 2190, 295, 24, 1, 1023, 28501, 111645, 133057, 70035, 19981, 3465, 385, 27, 1
Offset: 0
Square array A(n, k) starts:
n\k : 0 1 2 3 4 5 6 7
=======================================================================
0 : 1 1 1 1 1 1 1 1
1 : 3 6 9 12 15 18 21 24
2 : 7 25 55 97 151 217 295 385
3 : 15 90 285 660 1275 2190 3465 5160
4 : 31 301 1351 4081 9751 19981 36751 62401
5 : 63 966 6069 23772 70035 170898 365001 706104
6 : 127 3025 26335 133057 481951 1398097 3463615 7628545
7 : 255 9330 111645 724260 3216795 11075670 31794105 79669320
etc.
-
A372118[n_, k_] := ((k+2)^(n+2) - 2*(k+1)^(n+2) + k^(n+2))/2;
Table[A372118[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jul 10 2024 *)
-
A(n, k) = ((k+2)^(n+2) - 2 * (k+1)^(n+2) + k^(n+2))/2
A373398
Triangle read by rows: T(n, k) = number of k-element subobjects of an n-element set in the category of relations, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 9, 1, 1, 15, 55, 25, 1, 1, 31, 285, 395, 65, 1, 1, 63, 1351, 5045, 2555, 161, 1, 1, 127, 6069, 56931, 78685, 15211, 385, 1, 1, 255, 26335, 592725, 2091171, 1101021, 85099, 897, 1, 1, 511, 111645, 5834515, 50334765, 67590387, 14169405, 454315, 2049, 1
Offset: 0
There are 9 2-element subobjects of a 3-element set in Rel. As truth matrices:
[1 0] [1 0] [0 0] [1 0] [0 1] [0 1] [1 1] [1 0] [1 0]
[0 1] [0 0] [1 0] [0 1] [1 0] [0 1] [1 0] [1 1] [0 1]
[0 0] [0 1] [0 1] [0 1] [0 1] [1 0] [0 1] [0 1] [1 1]
To convert to relations, note that each entry corresponds to whether
[(1,1) (2,1)]
[(1,2) (2,2)]
[(1,3) (2,3)]
is in the relation.
Triangle starts:
1,
1, 1,
1, 3, 1,
1, 7, 9, 1,
1, 15, 55, 25, 1,
1, 31, 285, 395, 65, 1,
1, 63, 1351, 5045, 2555, 161, 1,
1, 127, 6069, 56931, 78685, 15211, 385, 1,
1, 255, 26335, 592725, 2091171, 1101021, 85099, 897, 1,
1, 511, 111645, 5834515, 50334765, 67590387, 14169405, 454315, 2049, 1,
...
Analogous sequence in the category Set:
A007318.
-
T[n_,k_]:=SeriesCoefficient[(1 / (1 - 2^k* x)) * Product[1 / (1 - (2^k - 2^i) * x),{i,0,k-1}],{x,0,n}]; Table[T[n-k,k],{n,0,9},{k,0,n}]//Flatten (* Stefano Spezia, Jun 04 2024 *)
-
dim = 10
def getGF(n):
R. = PowerSeriesRing(ZZ, 'x', dim)
f = 1 / (1 - 2^n * x)
for k in range(n):
f = f / (1 - (2^n - 2^k) * x)
return f
for n in range(dim):
print([getGF(k).list()[n - k] for k in range(n + 1)])
A068518
The sequence S(n,-3,1,1), where S(n,k,t,q) is defined by Sum_{j=0..n} binomial(n+q,j)^t * B(j,k) and B(j,k) is the j-th k-poly-Bernoulli number.
Original entry on oeis.org
1, 17, 163, 1229, 8131, 49637, 287323, 1602989, 8710291, 46423157, 243875083, 1267233149, 6530064451, 33433332677, 170320976443, 864288997709, 4372382138611, 22066261554197, 111150518391403, 559034856752669, 2808319611460771, 14094228176783717
Offset: 0
Vesselin Dimitrov (avding(AT)hotmail.com), Mar 18 2002
A069397
Half the number of 4 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.
Original entry on oeis.org
1, 67, 2427, 66579, 1565371, 33438451, 669776139, 12817737731, 237180629275, 4277806868563, 75628309151275, 1315968756706339, 22606389934281147, 384286142618740851, 6475978445076745163
Offset: 2
A069398
Half the number of 5 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.
Original entry on oeis.org
1, 177, 15253, 944157, 48602431, 2230830597, 94819936513, 3816886269599
Offset: 2
A069399
Half the number of 6 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.
Original entry on oeis.org
1, 465, 94847, 13182673, 1478456575
Offset: 2
A069400
Half the number of 7 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.
Original entry on oeis.org
1, 1219, 587031, 182702967, 44515781333
Offset: 2
A069401
Half the number of 8 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.
Original entry on oeis.org
1, 3193, 3625675, 2522968803
Offset: 2
A069402
Half the number of 9 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.
Original entry on oeis.org
1, 8361, 22372413, 34777826197
Offset: 2
A069406
Half the number of n X 6 binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.
Original entry on oeis.org
31, 1351, 48329, 1565371, 48602431, 1478456575, 44515781333
Offset: 1
Comments