cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A153459 Decimal expansion of log_3 (6).

Original entry on oeis.org

1, 6, 3, 0, 9, 2, 9, 7, 5, 3, 5, 7, 1, 4, 5, 7, 4, 3, 7, 0, 9, 9, 5, 2, 7, 1, 1, 4, 3, 4, 2, 7, 6, 0, 8, 5, 4, 2, 9, 9, 5, 8, 5, 6, 4, 0, 1, 3, 1, 8, 8, 0, 4, 2, 7, 8, 7, 0, 6, 5, 4, 9, 4, 3, 8, 3, 8, 6, 8, 5, 2, 0, 1, 3, 8, 0, 9, 1, 4, 8, 0, 5, 0, 6, 1, 1, 7, 2, 6, 8, 8, 5, 4, 9, 4, 5, 1, 7, 4
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Comments

Equals the Hausdorff dimension of Pascal's triangle modulo 3 (A083093). In general, the dimension of Pascal's triangle modulo a prime p is log(p*(p+1)/2) / log(p) (see Reiter link, theorem 2 page 117). - Bernard Schott, Dec 01 2022

Examples

			1.6309297535714574370995271143427608542995856401318804278706...
		

Crossrefs

Programs

Formula

Equals A016629 / A002391 = 1 + A102525. - Bernard Schott, Dec 01 2022

A196567 Decimal expansion of log(log(6)).

Original entry on oeis.org

5, 8, 3, 1, 9, 8, 0, 8, 0, 7, 8, 2, 6, 5, 9, 2, 9, 7, 9, 0, 9, 4, 6, 8, 2, 6, 9, 3, 6, 3, 6, 3, 7, 4, 8, 8, 1, 7, 7, 0, 0, 6, 2, 5, 7, 3, 8, 7, 6, 5, 5, 6, 5, 4, 2, 0, 6, 3, 8, 0, 4, 0, 7, 5, 0, 0, 7, 0, 2, 5, 7, 2, 3, 1, 9, 6, 4, 1, 7, 4, 8, 6, 7, 3, 8, 6, 7, 5, 8, 2, 0, 7, 9, 8, 0, 0, 8, 7, 2, 4, 0, 0, 3, 0, 3, 7, 1, 1, 8, 9, 7, 6, 0, 4
Offset: 0

Views

Author

Kausthub Gudipati, Oct 04 2011

Keywords

Examples

			0.583198080782659297909468269363637488177....
		

Crossrefs

Programs

A335089 Decimal expansion of log(Pi^2/6).

Original entry on oeis.org

4, 9, 7, 7, 0, 0, 3, 0, 2, 4, 7, 0, 7, 4, 5, 3, 4, 7, 4, 7, 4, 3, 7, 7, 3, 4, 4, 3, 2, 5, 4, 1, 5, 1, 5, 0, 5, 7, 1, 5, 9, 8, 9, 3, 3, 6, 4, 7, 6, 1, 8, 4, 3, 7, 1, 7, 1, 8, 7, 1, 7, 9, 9, 8, 1, 3, 3, 8, 7, 6, 2, 4, 5, 8, 1, 3, 4, 8, 4, 7, 7, 0, 8, 7, 7, 6, 7, 4, 5, 8, 7, 4, 0, 8, 2, 8, 6, 3, 9, 0, 7, 4, 0, 4, 8, 1
Offset: 0

Views

Author

Terry D. Grant, Sep 11 2020

Keywords

Examples

			Equals 1/(2^2) + 1/(3^2) + (1/(4^2))*(1/2) + 1/(5^2) + + 1/(7^2) + (1/(8^2))*(1/3) + ... = 0.4977003024707...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[Pi^2/6], 10, 120][[1]]
    RealDigits[Sum[PrimeZetaP[2 k]/k, {k, 1, inf}], 10, 120][[1]]
  • PARI
    log(Pi^2/6) \\ Michel Marcus, Sep 15 2020

Formula

Equals Sum_{k>=2} MangoldtLambda(k) / ((k^2)*log(k)).
Equals Sum_{k>=1} (1/k)*(1/(A246655(n)^2)) where k is the exponent of the prime power, A025474(n+1).
Equals Sum_{k>=1} primezeta(2*k)/k.
Equals 2*log(Pi) - log(6).
Equals log(zeta(2)) = log(A013661).
Previous Showing 11-13 of 13 results.