cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A269416 Expansion of 3*(2 - x)/((1 - x)*(1 + x)^2).

Original entry on oeis.org

6, -9, 15, -18, 24, -27, 33, -36, 42, -45, 51, -54, 60, -63, 69, -72, 78, -81, 87, -90, 96, -99, 105, -108, 114, -117, 123, -126, 132, -135, 141, -144, 150, -153, 159, -162, 168, -171, 177, -180, 186, -189, 195, -198, 204, -207, 213, -216, 222, -225, 231, -234, 240
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 25 2016

Keywords

Comments

Alternating sum of A017233.

Examples

			a(0) = 1 + 2 + 3 = 6;
a(1) = 1 + 2 + 3 - 4 - 5 - 6 = -9;
a(2) = 1 + 2 + 3 - 4 - 5 - 6 + 7 + 8 + 9 = 15;
a(3) = 1 + 2 + 3 - 4 - 5 - 6 + 7 + 8 + 9 - 10 - 11 - 12 = -18;
a(4) = 1 + 2 + 3 - 4 - 5 - 6 + 7 + 8 + 9 - 10 - 11 - 12 + 13 + 14 + 15 = 24, etc.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-1, 1, 1}, {6, -9, 15}, 53]
    Table[3 ((6 (-1)^n n + 7 (-1)^n + 1)/4), {n, 0, 52}]

Formula

G.f.: 3*(2 - x)/((1 - x)*(1 + x)^2).
a(n) = -a(n-1) + a(n-2) + a(n-3).
a(n) = Sum_{k=0..n} (-1)^k*3*(3*k + 2).
a(n) = 3*((-1)^n*6*n + (-1)^n*7 + 1)/4.
Sum_{n>=0} 1/a(n) = log(3)/6 - Pi/(18*sqrt(3)) = 0.082335416765006179088425414... . - Vaclav Kotesovec, Feb 25 2016
a(n) = 3*(-1)^n*A007494(n+1). - R. J. Mathar, Jun 07 2016

A192491 Molecular topological indices of the complete tripartite graphs K_{n,n,n}.

Original entry on oeis.org

24, 240, 864, 2112, 4200, 7344, 11760, 17664, 25272, 34800, 46464, 60480, 77064, 96432, 118800, 144384, 173400, 206064, 242592, 283200, 328104, 377520, 431664, 490752, 555000, 624624, 699840, 780864, 867912, 961200
Offset: 1

Views

Author

Eric W. Weisstein, Jul 10 2011

Keywords

Crossrefs

Formula

a(n) = 12*n^2*(3*n-1).
a(n) = 24*A050509(n).
G.f.: 24*x*(2*x^2+6*x+1)/(x-1)^4. [Colin Barker, Nov 04 2012]
From Bruce J. Nicholson, Sep 18 2019: (Start)
a(n) = 24*n * A000326(n).
a(n) = 4*n^2 * A017233(n).
a(n) = 24*(n^3 + A000292(n-2) + A000330(n-2)).
a(n) = 24*(n^4 - (A008585(n) * A000330(n-1))).
a(n) = 6*A046092(n) + (A008594(n+1) * A140676(n-1)). (End)
Previous Showing 11-12 of 12 results.