A038143
Hexagonal cata-condensed helicenes with n cells (non-planar cata-fused benzenoid hydrocarbons).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 5, 35, 200, 1121, 5919, 30509, 153187, 756825, 3688195
Offset: 1
A038144
Number of planar n-hexes, or polyhexes (in the sense of A000228, so rotations and reflections count as the same shape) with at least one hole.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 2, 13, 67, 404, 2323, 13517, 76570, 429320, 2373965, 13004323, 70641985, 381260615, 2046521491, 10936624026, 58228136539
Offset: 1
- J. V. Knop et al., On the total number of polyhexes, Match, No. 16 (1984), 119-134.
- Craig Knecht, Tiling of a fixed pattern of holes in a frame.
- J. V. Knop, K. Szymanski, Ž. Jeričević, and N. Trinajstić, On the total number of polyhexes, Match, No. 16 (1984), 119-134.
- Joseph Myers, Polyomino, polyhex and polyiamond tiling
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 05 2007
A070768
Number of polyhexes with n cells without holes that do not tile the plane.
Original entry on oeis.org
0, 0, 0, 0, 0, 4, 37, 381, 2717, 18760, 116439, 565943, 3033697, 14835067, 72633658, 356923880, 1746833634, 8532601529, 41868336466, 205618704167, 1012359995953
Offset: 1
- M. Gardner, Tiling with Polyominoes, Polyiamonds and Polyhexes. Chap. 14 in Time Travel and Other Mathematical Bewilderments. New York: W. H. Freeman, pp. 175-187, 1988.
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 05 2007
A306334
a(n) is the number of different linear hydrocarbon molecules with n carbon atoms.
Original entry on oeis.org
1, 3, 4, 10, 18, 42, 84, 192, 409, 926, 2030, 4577, 10171, 22889, 51176, 115070, 257987, 579868, 1301664, 2925209, 6569992, 14763529, 33166848, 74527233, 167446566, 376253517, 845401158, 1899609267, 4268309531, 9590827171, 21550227328, 48422972296, 108805058758
Offset: 1
For n=1, there is one possibility: CH4.
For n=2, there are 3 solutions: CHCH, CH3CH3, CH2CH2.
For n=3, there are 4 solutions: CHCCH3, CH2CCH2, CH3CHCH2, CH3CH2CH3.
For n=6, there are 42 solutions: CH3CH2CHCHCCH, CH3CH2CHCHCH2CH3, CH2CHCCCHCH2, CH2CHCHCHCH2CH3, CH2CHCHCHCCH, CH2CCCCHCH3, CHCCCCHCH2, CH3CHCHCHCHCH3, CHCCHCHCCH, CH2CCCCCH2, CH3CCCH2CH2CH3, CH3CCCCCH3, CH3CH2CH2CH2CH2CH3, CH2CHCHCHCHCH2, CH2CCHCH2CHCH2, CH3CHCCCHCH3, CHCCH2CH2CH2CH3, CHCCH2CH2CCH, CH3CCCH2CHCH2, CH2CCCHCH2CH3, CH2CCCHCCH, CHCCH2CCCH3, CHCCH2CHCCH2, CH3CH2CH2CH2CHCH2, CH2CHCHCCHCH3, CH3CH2CCCH2CH3, CH2CHCH2CH2CHCH2, CH2CHCHCCCH2, CH3CHCCHCH2CH3, CH3CH2CH2CHCHCH3, CH3CHCCHCCH, CHCCH2CH2CHCH2, CH3CHCHCCCH3, CH2CCHCCCH3, CH3CHCHCHCCH2, CHCCCCH2CH3, CH2CHCH2CHCHCH3, CH2CCHCHCCH2, CHCCCCCH, CH2CCHCH2CH2CH3, CH3CH2CCCHCH2, CHCCH2CHCHCH3.
- Vincent Champain, Table of n, a(n) for n = 1..1000
- L. Edson Jeffery, Danzer matrices (unit-primitive matrices). [It contains a discussion of a generalization of the matrix M that appears in the formula for a(n). See basis D_7.]
- Wikipedia, Cayley-Hamilton theorem.
- R. Witula, D. Slota, and A. Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq. 9 (2006), Article 06.4.3. [See Corollary 2.4 and the discussion about the polynomial p_7(x) and its roots. This essentially proves that a(n) can be expressed in terms of exp(I*2*Pi/7).]
- Index entries for linear recurrences with constant coefficients, signature (2,3,-5,-1,0,-2,3,1,-1).
-
with(LinearAlgebra):
M := Matrix([[0, 0, 1], [0, 1, 1], [1, 1, 1]]):
X := proc(n) MatrixPower(M, n - 2): end proc:
Y := proc(n) MatrixPower(M, floor(1/2*n) - 2): end proc:
a := proc(n) `if`(n < 4, [1,3,4][n], 1/2*(add(add(X(n)[i, j], i = 1..3), j = 1..3) + add(add(Y(n)[i, j]*min(j, 3 - (n mod 2)), i = 1..3), j = 1..3))):
end proc:
seq(a(n), n=1..40); # Petros Hadjicostas, Nov 17 2019
-
M = {{0, 0, 1}, {0, 1, 1}, {1, 1, 1}};
X[n_] := MatrixPower[M, n - 2];
Y[n_] := MatrixPower[M, Floor[1/2*n] - 2];
a[n_] := If[n < 4, {1, 3, 4}[[n]], 1/2*(Sum[Sum[X[n][[i, j]], {i, 1, 3}], {j, 1, 3}] + Sum[Sum[Y[n][[i, j]]*Min[j, 3 - Mod[n, 2]], {i, 1, 3}], {j, 1, 3}])];
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 16 2023, after Petros Hadjicostas *)
-
from numpy import array as npa
from numpy.linalg import matrix_power as npow
def F(n):
if n<4: return([0,1,3,4][n])
m=npa([[0,0,1],[0,1,1],[1,1,1]],dtype=object)
m2=npow(m,n//2-2)
return((sum(sum(npow(m,n-2)))+sum(sum(m2[j]*min(j+1,3-(n&1)) for j in range(3))))//2)
A038140
Number of planar polyhexes with n cells and a single hole of size at least 2.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 5, 43, 283, 1954, 12363, 76283, 453946, 2641506
Offset: 1
- Sven J. Cyvin, Jon Brunvoll, Björg N. Cyvin, John L. Bergan, and E. Brendsdal, The simplest coronoids: hollow hexagons, Struct. Chem., 2 (1991), 555-566.
- J. V. Knop, W. R. Mueller, K. Szymanski, and N. Trinajstic, Use of small computers for large computations: enumeration of polyhex hydrocarbons, J. Chem. Inf. Comput. Sci., 30 (1990), 159-160.
A038141
Number of planar polyhexes with n cells with at least two holes, all holes having size at least two.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 11, 149, 1618, 15123, 125764
Offset: 1
- S. J. Cyvin, J. Brunvoll, R. S. Chen, B. N. Cyvin, F. J. Zhang, Theory of Coronoid Hydrocarbons II, Lecture Notes in Chemistry 62, Springer-Verlag, 1994. (see table 3.2, p. 66)
Cf.
A000228 (hexagonal free polyominoes),
A038140 (planar single coronoids).
Edited by Markus Voege (markus.voege(AT)inria.fr), Dec 03 2003
A108071
Number of inner dual graphs of planar polyhexes with n hexagons.
Original entry on oeis.org
1, 1, 2, 4, 8, 21, 53, 151, 458, 1477, 4918, 16956, 59494, 212364, 766753, 2796876, 10284793, 38096072, 141998218, 532301941, 2005638293, 7592441954, 28865031086, 110174528925, 422064799013, 1622379252093
Offset: 1
For n = 4, the a(n) = 4 graphs are: the 4-path, which is the inner dual of 4 polyhexes out of A018190(4) = 7 (each of the others is an inner dual of a single polyhex); the paw graph; the diamond graph; the claw graph.
- Gunnar Brinkmann, Gilles Caporossi and Pierre Hansen, A constructive enumeration of fusenes and benzenoids, Journal of Algorithms, Volume 45, Issue 2, November 2002, Pages 155-166.
- Gunnar Brinkmann, Gilles Caporossi and Pierre Hansen, A Survey and New Results on Computer Enumeration of Polyhex and Fusene Hydrocarbons, J. Chem. Inf. Comput. Sci. 2003, 43, 3, 842-851.
A108072
Number of inner dual graphs of planar polyhexes with n hexagons having no nontrivial symmetry.
Original entry on oeis.org
1, 0, 0, 0, 0, 5, 22, 90, 342, 1247, 4491, 16095, 57906, 209170, 760830, 2784913, 10262649, 38051063, 141914613, 532131882, 2005320952, 7591794561, 28863820538, 110172051829, 422060152511, 1622369728951
Offset: 1
- Gunnar Brinkmann, Gilles Caporossi and Pierre Hansen, A constructive enumeration of fusenes and benzenoids, Journal of Algorithms, Volume 45, Issue 2, November 2002, Pages 155-166.
- Gunnar Brinkmann, Gilles Caporossi and Pierre Hansen, A Survey and New Results on Computer Enumeration of Polyhex and Fusene Hydrocarbons, J. Chem. Inf. Comput. Sci. 2003, 43, 3, 842-851.
A121220
Number of fixed hexagonal polygons (or benzenoids) with n cells.
Original entry on oeis.org
1, 3, 11, 44, 186, 813, 3640, 16590, 76663, 358195, 1688784, 8022273, 38351973, 184353219, 890371070, 4318095442, 21018564402, 102642526470, 502709028125, 2468566918644, 12150769362815, 59937663454017
Offset: 1
- Vaclav Kotesovec, Table of n, a(n) for n = 1..50 (terms 1..46 from N. J. A. Sloane) [all terms from Jensen link]
- I. Jensen, First 46 terms
- Iwan Jensen, A parallel algorithm for the enumeration of benzenoid hydrocarbons, arXiv:0808.0963v1 [cond-mat.stat-mech], 2007-2008.
- Markus Vöge, Anthony J. Guttmann, and Iwan Jensen, On the Number of Benzenoid Hydrocarbons, Journal of Chemical Information and Computer Sciences, 42(3) (2002), 456-466. See Table 2 under the B_h column on page 462.
A038146
Number of n-celled helicenes with peri-fragments.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 3, 36, 342, 2736
Offset: 1
- J. V. Knop et al., On the total number of polyhexes, Match, No. 16 (1984), 119-134.
Comments