cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A167267 Interspersion of the signature sequence of (1+sqrt(5))/2.

Original entry on oeis.org

1, 3, 2, 7, 5, 4, 12, 10, 8, 6, 19, 16, 14, 11, 9, 28, 24, 21, 18, 15, 13, 38, 34, 30, 26, 23, 20, 17, 50, 45, 41, 36, 32, 29, 25, 22, 63, 58, 53, 48, 43, 39, 35, 31, 27, 78, 72, 67, 61, 56, 51, 46, 42, 37, 33
Offset: 1

Views

Author

Clark Kimberling, Oct 31 2009

Keywords

Comments

Row n is the ordered sequence of numbers k such that A084531(k)=n. Is the difference sequence of column 1 equal to A019446? Is the difference sequence of row 1 essentially equal to A026351?
As a sequence, A167267 is a permutation of the positive integers. As an array, A167267 is the joint-rank array (defined at A182801) of the numbers {i+j*r}, for i>=1, j>=1, where r = golden ratio = (1+sqrt(5))/2. - Clark Kimberling, Nov 10 2012
This is a transposable interspersion; i.e., its transpose, A283734, is also an interspersion. - Clark Kimberling, Mar 16 2017

Examples

			Northwest corner:
1....3....7....12...19...28...38
2....5....10...16...24...34...45
4....8....14...21...30...41...53
6....11...18...26...36...48...61
9....15...23...32...43...56...70
13...20...29...39...51...65...80
		

References

  • Clark Kimberling, "Fractal Sequences and Interspersions," Ars Combinatoria 45 (1997) 157-168.

Crossrefs

Programs

  • Mathematica
    v = GoldenRatio;
    x = Table[Sum[Ceiling[i*v], {i, q}], {q, 0, end = 35}];
    y = Table[Sum[Ceiling[i*1/v], {i, q}], {q, 0, end}];
    tot[p_, q_] := x[[p + 1]] + p q + 1 + y[[q + 1]]
    row[r_] := Table[tot[n, r], {n, 0, (end - 1)/v}]
    Grid[Table[row[n], {n, 0, (end - 1)}]]
    (* Norman Carey, Jul 03 2012 *)
  • PARI
    \\ Produces the triangle when the array is read by antidiagonals
    r = (1+sqrt(5))/2;
    z = 100;
    s(n) = if(n<1, 1, s(n - 1) + 1 + floor(n*r));
    p(n) = n + 1 + sum(k=0, n, floor((n - k)/r));
    u = v = vector(z + 1);
    for(n=1, 101, (v[n] = s(n - 1)));
    for(n=1, 101, (u[n] = p(n - 1)));
    w(i, j) = v[i] + u[j] + (i - 1) * (j - 1) - 1;
    tabl(nn) = {for(n=1, nn, for(k=1, n, print1(w(n - k + 1, k), ", "); ); print(); ); };
    tabl(10) \\ Indranil Ghosh, Mar 26 2017
    
  • Python
    # Produces the triangle when the array is read by antidiagonals
    import math
    from sympy import sqrt
    r=(1 + sqrt(5))/2
    def s(n): return 1 if n<1 else s(n - 1) + 1 + int(math.floor(n*r))
    def p(n): return n + 1 + sum(int(math.floor((n - k)/r)) for k in range(n+1))
    v=[s(n) for n in range(101)]
    u=[p(n) for n in range(101)]
    def w(i, j): return u[i - 1] + v[j - 1] + (i - 1) * (j - 1) - 1
    for n in range(1, 11):
        print([w(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017

Formula

R(m,n) = sum{[(m-i+n+r)/r], i=1,2,...z(m,n)}, where r = (1+sqrt(5))/2 and z(m,n) = m + [(n-1)*r]. - Clark Kimberling, Nov 10 2012

A194968 Fractalization of (1+[n/r]), where [ ]=floor, r=(1+sqrt(5))/2 (the golden ratio), and n>=1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 3, 4, 2, 1, 3, 4, 5, 2, 1, 3, 4, 6, 5, 2, 1, 3, 4, 6, 7, 5, 2, 1, 3, 4, 6, 8, 7, 5, 2, 1, 3, 4, 6, 8, 9, 7, 5, 2, 1, 3, 4, 6, 8, 9, 10, 7, 5, 2, 1, 3, 4, 6, 8, 9, 11, 10, 7, 5, 2, 1, 3, 4, 6, 8, 9, 11, 12, 10, 7, 5, 2, 1, 3, 4, 6, 8, 9, 11, 12, 13, 10, 7, 5, 2, 1, 3, 4
Offset: 1

Views

Author

Clark Kimberling, Sep 07 2011

Keywords

Comments

See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. The sequence (1+[n/r]) is A019446.

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio; p[n_] := 1 + Floor[n/r]
    Table[p[n], {n, 1, 90}]  (* A019446 *)
    g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]
    f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]
    f[20]  (* A194968 *)
    row[n_] := Position[f[30], n];
    u = TableForm[Table[row[n], {n, 1, 5}]]
    v[n_, k_] := Part[row[n], k];
    w = Flatten[Table[v[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]]  (* A194969 *)
    q[n_] := Position[w, n]; Flatten[Table[q[n],
    {n, 1, 80}]]  (* A194970 *)

A371381 Main diagonal of A219875.

Original entry on oeis.org

2, 8, 13, 25, 41, 52, 74, 89, 117, 149, 170, 208, 250, 277, 325, 356, 410, 468, 505, 569, 610, 680, 754, 801, 881, 965, 1018, 1108, 1165, 1261, 1361, 1424, 1530, 1640, 1709, 1825, 1898, 2020, 2146, 2225, 2357, 2440, 2578, 2720, 2809, 2957, 3109, 3204, 3362, 3461
Offset: 1

Views

Author

Paolo Xausa, Mar 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Array[#^2 + Ceiling[# / GoldenRatio]^2 &, 100]
  • Python
    from math import isqrt
    def A371381(n): return (n<<1)*(n-1)+1+(q:=n+isqrt(5*n**2)>>1)*(q-(n-1<<1)) # Chai Wah Wu, Mar 21 2024

Formula

a(n) = n^2 + ceiling(n/(1 + sqrt(5))/2)^2 = n^2 + A019446(n)^2.

A187911 Rank transform of the sequence (1+floor(n*r)), where r=(-1+sqrt(5))/2; complement of A187912.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 47, 49, 50, 52, 53, 54, 56, 57, 58, 59, 61, 63, 64, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 91, 93, 94, 96, 98, 99, 100, 101, 103, 105, 106, 107, 108, 110, 111, 112, 114, 116, 117, 118, 119
Offset: 1

Views

Author

Clark Kimberling, Mar 15 2011

Keywords

Comments

See A187224.

Crossrefs

Programs

  • Mathematica
    r=(-1+5^(1/2))/2;
    seqA = Table[1+Floor[r*n], {n, 1, 220}] (* A019446 *)
    seqB = Table[n, {n, 1, 220}];  (* A000027 *)
    jointRank[{seqA_,
       seqB_}] := {Flatten@Position[#1, {_, 1}],
        Flatten@Position[#1, {_, 2}]} &[
      Sort@Flatten[{{#1, 1} & /@ seqA, {#1, 2} & /@ seqB}, 1]];
    limseqU =
     FixedPoint[jointRank[{seqA, #1[[1]]}] &,
       jointRank[{seqA, seqB}]][[1]] (* A187911 *)
    Complement[Range[Length[seqA]], limseqU]  (* A187912 *)
    (* Peter J. C. Moses, Mar 15 2011 *)

A339765 a(n) = 2*floor(n*phi) - 3*n, where phi = (1+sqrt(5))/2.

Original entry on oeis.org

-1, 0, -1, 0, 1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6, 5, 6, 7, 6, 7, 8, 7, 8, 7, 8, 9, 8, 9, 8, 9, 10, 9, 10, 11, 10, 11, 10, 11, 12, 11, 12, 11, 12, 13, 12, 13, 14, 13, 14, 13, 14, 15, 14, 15, 16, 15, 16, 15, 16, 17, 16, 17, 16
Offset: 1

Views

Author

Primoz Pirnat, Dec 16 2020

Keywords

Comments

a(n) are coefficients in the formulas for multiplication of fractional parts of multiples of the golden mean:
(I) frac(b*phi)*frac(c*phi) = 1-frac(d*phi); d = 2*b*c+a(b)*c/2+a(c)*b/2;
(IIa) frac(b*phi)*(1-frac(c*phi)) = frac(e*phi); e = d+b;
(IIb) (1-frac(b*phi))*frac(c*phi) = frac(f*phi); f = d+c;
(III) (1-frac(b*phi))*(1-frac(c*phi)) = 1-frac(g*phi); g = d+b+c;
where frac() = FractionalPart(), phi = (1+sqrt(5))/2 and b,c are positive integers.
The parameters d,e,f,g are also positive integers.

Examples

			For b=3, c=10, a(3)=-1, a(10)=2 are solutions of upper formulas:
(I) frac(3*phi)*frac(10*phi) = 1-frac(58*phi); d = 2*3*10+a(3)*10/2+a(10)*3/2 = 58;
(IIa)  frac(3*phi)*(1-frac(10*phi)) = frac(61*phi); e = d+3 = 61;
(IIb)  (1-frac(3*phi))*frac(10*phi) = frac(68*phi); f = d+10 = 68;
(III)  (1-frac(3*phi))*(1-frac(10*phi)) = 1-frac(71*phi); g = d+3+10 = 71.
		

Crossrefs

Programs

  • Mathematica
    Table[2Floor[n*GoldenRatio]-3n,{n,76}] (* Stefano Spezia, Dec 18 2020 *)
  • PARI
    a(n) = 2*floor(n*quadgen(5)) - 3*n; \\ Michel Marcus, Jan 05 2021
    
  • Python
    from math import isqrt
    def A339765(n): return ((n+isqrt(5*n**2))&~1)-3*n # Chai Wah Wu, Aug 09 2022

Formula

a(n) = 2*A000201(n) - 3*n.
a(n) = A005206(n-1) - A189663(n+1).
a(n) = A019446(n) - A060144(n) - sign(abs(n)) - 1.
From Primoz Pirnat, May 15 2024: (Start)
a(n) = A050140(n) - 2*n.
a(n) = 2*A005206(n-1) - n.
a(n) = n - 2*A189663(n+1). (End)

A134299 Maximal length of a sequence such that v(0)=n, v(k+2) = v(k)-v(k+1), v(k) >= 0.

Original entry on oeis.org

4, 5, 6, 5, 7, 6, 5, 8, 6, 7, 6, 6, 9, 6, 7, 8, 6, 7, 6, 7, 10, 6, 7, 8, 7, 9, 6, 7, 8, 7, 7, 8, 7, 11, 7, 7, 8, 7, 9, 8, 7, 10, 7, 7, 8, 7, 9, 8, 7, 8, 7, 9, 8, 7, 12, 8, 7, 8, 7, 9, 8, 7, 10, 8, 9, 8, 7, 11, 8, 7, 8, 8, 9, 8, 7, 10, 8, 9, 8, 8, 9, 8, 7, 10, 8, 9, 8, 8, 13, 8, 9, 8, 8, 9, 8, 8, 10, 8, 9, 8
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2007

Keywords

Comments

This is also the maximal index at which n can occur in a Fibonacci-like sequence u(k+2) = u(k)+u(k+1) of nonnegative numbers.
A sequence of this length is obtained for v(0) = n, v(1) = A019446(n) = ceiling(n/tau) or A060143(n) = floor(n/tau).

Examples

			a(2007)=11 since there is no such sequence longer than v = (2007, 1240, 767, 473, 294, 179, 115, 64, 51, 13, 38).
		

Crossrefs

Programs

  • PARI
    A134299( goal, mi=0, mx=0, new=0 ) = { for( j=mi,goal, a=[goal,new=j]; while( mi<=new=a[ #a-1]-new, a=concat(a,new)); if( #a>mx, mx=#a)); mx }

A300763 a(n) = ceiling(n/g^3), where g = (1+sqrt(5))/2 is the golden ratio.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18
Offset: 0

Views

Author

Jeffrey Shallit, Jul 02 2018

Keywords

Crossrefs

Cf. A001622, A019446, which is ceiling(n/g), A189663, which is ceiling(n/g^2) (but shifted by one).
Cf. A098317.

Programs

  • Mathematica
    Array[Ceiling[#/GoldenRatio^3] &, 90, 0] (* Robert G. Wilson v, Jul 02 2018 *)
  • PARI
    a(n) = my(t=2+sqrt(5)); ceil(n/t); \\ Altug Alkan, Jul 02 2018

Formula

a(n) = ceiling(n/t) where t = 2*g + 1 = 2 + sqrt(5). - Altug Alkan, Jul 02 2018

A332502 Rectangular array read by antidiagonals: T(n,k) = floor(n + k*r), where r = golden ratio = (1+sqrt(5))/2.

Original entry on oeis.org

0, 1, 1, 3, 2, 2, 4, 4, 3, 3, 6, 5, 5, 4, 4, 8, 7, 6, 6, 5, 5, 9, 9, 8, 7, 7, 6, 6, 11, 10, 10, 9, 8, 8, 7, 7, 12, 12, 11, 11, 10, 9, 9, 8, 8, 14, 13, 13, 12, 12, 11, 10, 10, 9, 9, 16, 15, 14, 14, 13, 13, 12, 11, 11, 10, 10, 17, 17, 16, 15, 15, 14, 14, 13
Offset: 0

Views

Author

Clark Kimberling, May 08 2020

Keywords

Comments

Every nonnegative integer occurs exactly once in the union of row 0 and the main diagonal.
Column 0: Nonnegative integers, A001477.
Row 0: Lower Wythoff sequence, A000201.
Row 1: A026351.
Row 2: A026355 (and essentially A099267).
Main Diagonal: Upper Wythoff sequence, A001950.
Diagonal (1,4,6,9,...) = A003622;
Diagonal (3,5,8,11,...) = A026274;
Diagonal (1,3,6,8,...) = A026352;
Diagonal (2,4,7,9,...) = A026356.

Examples

			Northwest corner:
  0   1   3   4   6   8    9    11   12   14   16
  1   2   4   5   7   9    10   12   13   15   17
  2   3   5   6   8   10   11   13   14   16   18
  3   4   6   7   9   11   12   14   15   17   19
  4   5   7   8   10  12   13   15   16   18   20
  5   6   8   9   11  13   14   16   17   19   21
As a triangle (antidiagonals):
  0
  1   1
  2   2   3
  3   3   4   4
  4   4   5   5   6
  5   5   6   6   7   8
  6   6   7   7   8   9   9
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := Floor[n + k*GoldenRatio];
    Grid[Table[t[n, k], {n, 0, 10}, {k, 0, 10}]] (* array *)
    u = Table[t[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten  (* sequence *)

Formula

T(n,k) = floor(n + k*r), where r = golden ratio = (1+sqrt(5))/2.

A385177 a(n) = Sum_{k=1..n} ceiling(k/phi), where phi is the golden ratio (A001622).

Original entry on oeis.org

1, 3, 5, 8, 12, 16, 21, 26, 32, 39, 46, 54, 63, 72, 82, 92, 103, 115, 127, 140, 153, 167, 182, 197, 213, 230, 247, 265, 283, 302, 322, 342, 363, 385, 407, 430, 453, 477, 502, 527, 553, 579, 606, 634, 662, 691, 721, 751, 782, 813, 845, 878, 911, 945, 979, 1014, 1050, 1086, 1123
Offset: 1

Views

Author

Paolo Xausa, Jun 20 2025

Keywords

Crossrefs

Partial sums of A019446.

Programs

  • Mathematica
    Accumulate[Ceiling[Range[100]/GoldenRatio]]
  • Python
    from math import isqrt
    def A385177(n): return n+sum(isqrt(5*i**2)-i>>1 for i in range(1,n+1)) # Chai Wah Wu, Jun 20 2025

Formula

a(n) = A183136(n) + n.
Previous Showing 11-19 of 19 results.