cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A015050 Let m = A013929(n); then a(n) = smallest k such that m divides k^3.

Original entry on oeis.org

2, 2, 3, 6, 4, 6, 10, 6, 5, 3, 14, 4, 6, 10, 22, 15, 12, 7, 10, 26, 6, 14, 30, 21, 4, 34, 6, 15, 38, 20, 9, 42, 22, 30, 46, 12, 14, 33, 10, 26, 6, 28, 58, 39, 30, 11, 62, 5, 42, 8, 66, 15, 34, 70, 12, 21, 74, 30, 38, 51, 78, 20, 18, 82, 42, 13, 57, 86
Offset: 1

Views

Author

R. Muller

Keywords

Crossrefs

Programs

  • Maple
    isA013929 := proc(n)
        not numtheory[issqrfree](n) ;
    end proc:
    A013929 := proc(n)
        option remember;
        local a;
        if n = 1 then
            4;
        else
            for a from procname(n-1)+1 do
                if isA013929(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    A015050 := proc(n)
        local m ;
        m := A013929(n) ;
        for k from 1 do
            if modp(k^3,m) = 0 then
                return k;
            end if;
        end do:
    end proc:
  • Mathematica
    f[p_, e_] := p^Ceiling[e/3]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; s /@ Select[Range[200], !SquareFreeQ[#] &] (* Amiram Eldar, Feb 09 2021 *)
  • PARI
    lista(kmax) = {my(f); for(k = 2, kmax, f = factor(k); if(!issquarefree(f), print1(prod(i = 1, #f~, f[i,1]^ceil(f[i,2]/3)), ", ")));} \\ Amiram Eldar, Jan 06 2024

Formula

a(n) = A019555(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2) * (zeta(2) * zeta(5) * Product_{p prime} (1-1/p^2+1/p^3-1/p^4) - 1)/(zeta(2)-1)^2 = 0.6611256641303... . - Amiram Eldar, Jan 06 2024

Extensions

Description corrected by Diego Torres (torresvillarroel(AT)hotmail.com), Jun 23 2002

A056551 Smallest cube divisible by n divided by largest cube which divides n.

Original entry on oeis.org

1, 8, 27, 8, 125, 216, 343, 1, 27, 1000, 1331, 216, 2197, 2744, 3375, 8, 4913, 216, 6859, 1000, 9261, 10648, 12167, 27, 125, 17576, 1, 2744, 24389, 27000, 29791, 8, 35937, 39304, 42875, 216, 50653, 54872, 59319, 125, 68921, 74088, 79507, 10648
Offset: 1

Views

Author

Henry Bottomley, Jun 25 2000

Keywords

Examples

			a(16) = 8 since smallest cube divisible by 16 is 64 and smallest cube which divides 16 is 8 and 64/8 = 8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^If[Divisible[e, 3], 0, 1]; a[n_] := (Times @@ (f @@@ FactorInteger[ n]))^3; Array[a, 100] (* Amiram Eldar, Aug 29 2019*)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%3, f[i,1], 1))^3; } \\ Amiram Eldar, Oct 28 2022

Formula

a(n) = A053149(n)/A008834(n) = A048798(n)*A050985(n) = A056552(n)^3.
From Amiram Eldar, Oct 28 2022: (Start)
Multiplicative with a(p^e) = 1 if e is divisible by 3, and a(p^e) = p^3 otherwise.
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(12)/(4*zeta(3))) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = A013670 * A330596 / (4*A002117) = 0.1557163105... . (End)
Dirichlet g.f.: zeta(3*s) * Product_{p prime} (1 + 1/p^(s-3) + 1/p^(2*s-3)). - Amiram Eldar, Sep 16 2023

A254733 a(n) is the least k > n such that n divides k^3.

Original entry on oeis.org

2, 4, 6, 6, 10, 12, 14, 10, 12, 20, 22, 18, 26, 28, 30, 20, 34, 24, 38, 30, 42, 44, 46, 30, 30, 52, 30, 42, 58, 60, 62, 36, 66, 68, 70, 42, 74, 76, 78, 50, 82, 84, 86, 66, 60, 92, 94, 60, 56, 60, 102, 78, 106, 60, 110, 70, 114, 116, 118, 90, 122, 124, 84
Offset: 1

Views

Author

Peter Kagey, Feb 06 2015

Keywords

Comments

A073353(n) <= a(n) <= 2*n. Any prime that divides n must also divide a(n), and because n divides (2*n)^3.

Examples

			a(8) = 10 because 8 divides 10^3, but 8 does not divide 9^3.
		

Crossrefs

Cf. A073353 (similar, with k^n).
Cf. A254732 (similar, with k^2), A254734 (similar, with k^4).
Cf. A019555 (similar without the restriction that a(n) > n).

Programs

  • Mathematica
    lkn[n_]:=Module[{k=n+1},While[PowerMod[k,3,n]!=0,k++];k]; Array[lkn,70] (* Harvey P. Dale, Nov 23 2024 *)
  • PARI
    a(n)=for(k=n+1,2*n,if(k^3%n==0,return(k)))
    vector(100,n,a(n)) \\ Derek Orr, Feb 07 2015
  • Ruby
    def a(n)
      (n+1..2*n).find { |k| k**3 % n == 0 }
    end
    

Formula

a(n) = n + A019555(n).

A076116 Start of the smallest string of n consecutive positive numbers with a cube sum, or 0 if no such number exists.

Original entry on oeis.org

1, 13, 8, 0, 23, 2, 46, 0, 20, 8, 116, 0, 163, 18, 218, 6, 281, 32, 352, 0, 431, 50, 518, 0, 28, 72, 14, 0, 827, 98, 946, 0, 1073, 128, 1208, 0, 1351, 162, 1502, 0, 1661, 200, 1828, 0, 53, 242, 2186, 98, 32, 43, 2576, 0, 2783, 36, 2998, 0, 3221, 392, 3452, 0, 3691, 450
Offset: 1

Views

Author

Amarnath Murthy, Oct 09 2002

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local y,F,t,k,v;
          if n::odd then
             F:= ifactors(n)[2];
             y:= mul(t[1]^ceil(t[2]/3),t=F);
             k:= 1+floor((n*(n-1)/2)^(1/3)/y);
             (k*y)^3/n - (n-1)/2;
          else
             v:= padic:-ordp(n,2);
             if v mod 3 <> 1 then return 0 fi;
             F:= ifactors(n/2^v)[2];
             y:= mul(t[1]^ceil(t[2]/3),t=F)*2^((v-1)/3);
             k:= 1 + floor((n*(n-1)/2)^(1/3)/y);
             if k::even then k:= k+1 fi;
             (k*y)^3/n - (n-1)/2;
          fi
    end proc:
    map(f, [$1..100]); # Robert Israel, Nov 15 2023
  • Mathematica
    f[n_] := Module[{y, F, t, k, v},
    If[OddQ[n],
       F = FactorInteger[n];
       y = Product[t[[1]]^Ceiling[t[[2]]/3], {t, F}];
       k = 1 + Floor[(n*(n-1)/2)^(1/3)/y];
       (k*y)^3/n - (n-1)/2
    ,
       v = IntegerExponent[n, 2];
       If[Mod[v, 3] != 1, Return[0]];
       F = FactorInteger[n/2^v];
       y = Product[t[[1]]^Ceiling[t[[2]]/3], {t, F}]*2^((v-1)/3);
       k = 1 + Floor[(n*(n-1)/2)^(1/3)/y];
       If[EvenQ[k], k = k+1];
       (k*y)^3/n - (n-1)/2]];
    Map[f, Range[100]] (* Jean-François Alcover, Jul 09 2024, after Robert Israel *)

Formula

From Robert Israel, Nov 15 2023: (Start)
If n is odd, then a(n) is the least positive integer of the form (k*A019555(n))^3/n - (n-1)/2 where k is an integer.
If n is even, then let v = A007814(n). If v == 1 (mod 3) then a(n) is the least positive integer of the form (k*A019555(n/2))^3/n - (n-1)/2 where k an odd integer; otherwise, a(n) = 0. (End)

Extensions

More terms from David Wasserman, Apr 02 2005

A365489 The number of divisors of the smallest cube divisible by n.

Original entry on oeis.org

1, 4, 4, 4, 4, 16, 4, 4, 4, 16, 4, 16, 4, 16, 16, 7, 4, 16, 4, 16, 16, 16, 4, 16, 4, 16, 4, 16, 4, 64, 4, 7, 16, 16, 16, 16, 4, 16, 16, 16, 4, 64, 4, 16, 16, 16, 4, 28, 4, 16, 16, 16, 4, 16, 16, 16, 16, 16, 4, 64, 4, 16, 16, 7, 16, 64, 4, 16, 16, 64, 4, 16, 4
Offset: 1

Views

Author

Amiram Eldar, Sep 05 2023

Keywords

Comments

The number of divisors of the cube root of the smallest cube divisible by n, A019555(n), is A365488(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 3*Ceiling[e/3] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> 3*((x-1)\3) + 4, factor(n)[, 2]));

Formula

a(n) = A000005(A053149(n)).
Multiplicative with a(p^e) = 3*ceiling(e/3) + 1.
Dirichlet g.f.: zeta(s) * zeta(3*s) * Product_{p prime} (1 + 3/p^s - 1/p^(3*s)).
Previous Showing 11-15 of 15 results.