cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 340 results. Next

A339813 The exponent of the highest power of 2 dividing (A019565(n) - 1).

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 5, 0, 1, 0, 2, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 5, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 2, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2020

Keywords

Comments

The 2-adic valuation of A339809(n).

Crossrefs

Cf. A007814, A339809, A339814 (bisection).

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339813(n) = valuation((A019565(n)-1),2);

Formula

a(n) = A007814(A339809(n)).

A339972 Odd part of phi(A019565(8*n)).

Original entry on oeis.org

1, 3, 5, 15, 3, 9, 15, 45, 1, 3, 5, 15, 3, 9, 15, 45, 9, 27, 45, 135, 27, 81, 135, 405, 9, 27, 45, 135, 27, 81, 135, 405, 11, 33, 55, 165, 33, 99, 165, 495, 11, 33, 55, 165, 33, 99, 165, 495, 99, 297, 495, 1485, 297, 891, 1485, 4455, 99, 297, 495, 1485, 297, 891, 1485, 4455, 7, 21, 35, 105, 21, 63, 105, 315, 7, 21
Offset: 0

Views

Author

Antti Karttunen, Dec 26 2020

Keywords

Comments

Compare also to the scatter plots of A339898 and A339901.

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n, 2));
    A339972(n) = { my(m=1, p=5); while(n>0, p = nextprime(1+p); if(n%2, m *= A000265(p-1)); n >>= 1); (m); };

Formula

If 16n = 2^e1 + 2^e2 + ... + 2^ek [e1 ... ek distinct], then a(n) = A057023(e1) * A057023(e2) * ... * A057023(ek).
a(n) = A339971(4*n) = A000265(A339821(4*n)) = A053575(A019565(8*n)).

A365810 Squareferee numbers ordered factorization-wise by Blue code: a(n) = A019565(A193231(n)).

Original entry on oeis.org

1, 2, 6, 3, 10, 5, 15, 30, 210, 105, 35, 70, 21, 42, 14, 7, 22, 11, 33, 66, 55, 110, 330, 165, 1155, 2310, 770, 385, 462, 231, 77, 154, 858, 429, 143, 286, 2145, 4290, 1430, 715, 5005, 10010, 30030, 15015, 2002, 1001, 3003, 6006, 39, 78, 26, 13, 390, 195, 65, 130, 910, 455, 1365, 2730, 91, 182, 546, 273, 1870, 935
Offset: 0

Views

Author

Antti Karttunen, Oct 06 2023

Keywords

Crossrefs

Permutation of A005117.
Cf. also A366263.

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A193231(n) = { my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2) };
    A365810(n) = A019565(A193231(n));

Formula

a(n) = A334205(A019565(n)).

A372514 Index k such that A280864(k) = A019565(n) or 0 if A019565(n) does not appear in A280864.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 17, 26, 11, 12, 20, 37, 36, 72, 73, 207, 14, 15, 43, 68, 42, 106, 107, 310, 47, 151, 152, 442, 294, 745, 746, 2227, 23, 22, 44, 53, 52, 130, 114, 386, 83, 188, 156, 519, 189, 884, 754, 2573, 115, 269, 270, 816, 387, 1405, 1406, 4134, 563, 1954
Offset: 0

Views

Author

Michael De Vlieger, Jul 29 2024

Keywords

Comments

Offset matches A019565.
Based on Selcoe's comment in A280864 regarding k in sequences S_r = { k = m*r : rad(m) | r }, squarefree r > 1, appearing in order. The appearance of r itself introduces the lineage S_r, followed by lpf(r)*r, etc., if A280864 is a permutation of natural numbers.
Conjecture: there are no zeros in this sequence, which is equivalent to the conjecture that A280864 is a permutation of natural numbers. Minor corollary: a(127) > 2^18.

Examples

			Let s = A019565 and let t = A280864.
a(0) = 1 since s(0) = 1 = t(1).
a(1) = 2 since s(1) = 2 = t(2).
a(2) = 4 since s(2) = 3 = t(4).
a(3) = 5 since s(3) = 5 = t(5).
Table relating this sequence to s and t. The last column shows Y if s(n) is divisible by the prime in the heading, otherwise ".":
   n   s(n)  a(n)   2357
  ----------------------
   0     1     1    .
   1     2     2    Y
   2     3     4    .Y
   3     6     5    YY
   4     5     7    ..Y
   5    10     8    Y.Y
   6    15    17    .YY
   7    30    26    YYY
   8     7    11    ...Y
   9    14    12    Y..Y
  10    21    20    .Y.Y
  11    42    37    YY.Y
  12    35    36    .YYY
  13    70    72    Y.YY
  14   105    73    .YYY
  15   210   207    YYYY
  ...
		

Crossrefs

Programs

  • Mathematica
    nn = 2^13; r = s = 1; c[_] := False;
    rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]];
    a = Monitor[Reap[Do[w = GCD[r, s]; k = m = r/w;
        While[Or[c[k], ! CoprimeQ[w, k] ], k += m]; Sow[k]; c[k] = True;
        s = r; r = rad[k], {i, nn}]][[-1, 1]], i];
    Array[FirstPosition[a, Times @@ Prime@ Position[Reverse[IntegerDigits[#, 2]], 1][[All, 1]] ][[1]] &, 61, 0]

Formula

a(2^k) > 0 and a(2*m+1) > 0, consequences of Theorem 1 in A280864.

A372697 Index k such that A280866(k) = A019565(n) or 0 if A019565(n) does not appear in A280866.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 17, 26, 11, 12, 20, 37, 36, 67, 68, 205, 14, 15, 46, 63, 74, 90, 127, 302, 73, 145, 146, 373, 307, 736, 1101, 2126, 23, 22, 47, 76, 75, 121, 122, 364, 78, 176, 177, 510, 343, 842, 1229, 2607, 180, 275, 276, 826, 553, 1387, 1388, 4088, 827, 1878
Offset: 0

Views

Author

Michael De Vlieger, Jul 29 2024

Keywords

Comments

Offset matches A019565.
Conjecture: there are no zeros in this sequence, which is equivalent to the conjecture that A280866 is a permutation of natural numbers.

Examples

			Let s = A019565 and let t = A280866.
a(0) = 1 since s(0) = 1 = t(1).
a(1) = 2 since s(1) = 2 = t(2).
a(2) = 4 since s(2) = 3 = t(4).
a(3) = 5 since s(3) = 5 = t(5).
Table relating this sequence to s and t. The last column shows Y if s(n) is divisible by the prime in the heading, otherwise ".":
   n   s(n)  a(n)   2357
  ----------------------
   0     1     1    .
   1     2     2    Y
   2     3     4    .Y
   3     6     5    YY
   4     5     7    ..Y
   5    10     8    Y.Y
   6    15    17    .YY
   7    30    26    YYY
   8     7    11    ...Y
   9    14    12    Y..Y
  10    21    20    .Y.Y
  11    42    37    YY.Y
  12    35    36    .YYY
  13    70    67    Y.YY
  14   105    68    .YYY
  15   210   205    YYYY
  ...
		

Crossrefs

Programs

  • Mathematica
    nn = 2^14; c[] := False; m[] := 1;
    i = 1; j = m[1] = m[2] = 2; c[1] = c[2] = True;
    f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]];
    s = Association[
      Monitor[Reap[
         Do[While[c[Set[k, #   m[#]]], m[#]++] &[f[i * j]/f[i]];
          If[SquareFreeQ[k],
            Sow[Total[2^(-1 + PrimePi[FactorInteger[k][[All, 1]]])] -> n] ];
          Set[{c[k], i, j}, {True, j, k}], {n, 3, nn}] ][[-1, 1]], n]];
    TakeWhile[{1, 2}~Join~Array[If[KeyExistsQ[s, #], Lookup[s, #], 0] &, Floor@ Sqrt[nn], 2], # > 0 &]

A378518 a(n) = n - A019565(A048675(n)), where A019565 and A048675 are base-2 exp and log-functions.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 4, 0, 0, 7, 0, 0, 0, 11, 0, 8, 0, 5, 0, 0, 0, 14, 18, 0, 12, 7, 0, 0, 0, 22, 0, 0, 0, 21, 0, 0, 0, 10, 0, 0, 0, 11, 38, 0, 0, 33, 38, 36, 0, 13, 0, 24, 0, 14, 0, 0, 0, 53, 0, 0, 28, 49, 0, 0, 0, 17, 0, 0, 0, 42, 0, 0, 54, 19, 0, 0, 0, 73, 74, 0, 0, 49, 0, 0, 0, 22, 0, 76, 0, 23, 0, 0, 0, 66, 0, 76
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2024

Keywords

Comments

No negative terms because A097246(n) <= n for all n.

Crossrefs

Cf. A005117 (positions of 0's), A019565, A048675, A097246, A097248, A376406.
Cf. also A376417, A376418 (analogous sequences for other bases than base-2).

Programs

  • PARI
    A097246(n) = { my(f=factor(n)); prod(i=1, #f~, (nextprime(f[i, 1]+1)^(f[i, 2]\2))*((f[i, 1])^(f[i, 2]%2))); };
    A097248(n) = { my(k=A097246(n)); while(k<>n, n = k; k = A097246(k)); k; };
    A378518(n) = (n - A097248(n));

Formula

a(n) = n - A097248(n).

A379770 Irregular triangle T(j,k) read by rows: split the natural numbers m > 1 into groups of length 2^s and then sort each group in the order defined in A019565.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11, 13, 14, 15, 16, 17, 18, 20, 19, 24, 21, 25, 22, 26, 23, 28, 27, 29, 30, 31, 32, 33, 34, 36, 35, 40, 37, 48, 41, 38, 42, 49, 39, 50, 44, 43, 52, 51, 45, 56, 46, 53, 57, 54, 47, 58, 55, 60, 59, 61, 62, 63, 64, 65, 66, 68, 67
Offset: 0

Views

Author

Michael De Vlieger, Jan 02 2025

Keywords

Comments

In other words, function f(m) = Product_{i=0..Floor(log_2(m))} prime(i), with i the index of 1's in the binary expansion of m.
A permutation of the natural numbers.

Examples

			Table below shows rows j = 0..5:
j\k   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16
-------------------------------------------------------------------
0:    1;
1:    2;
2:    3,  4;
3:    5,  6,  7,  8;
4:    9, 10, 12, 11, 13, 14, 15, 16;
5:   17, 18, 20, 19, 24, 21, 25, 22, 26, 23, 28, 27, 29, 30, 31, 32;
.
These correspond with values f(T(j,k)) as shown below:
j\k   1   2   3   4   5   6    7    8    9   10   11   12   13   14    15    16
-------------------------------------------------------------------------------
0:    1;
1:    2;
2:    3,  6;
3:    5, 10, 15, 30;
4:    7, 14, 21, 35, 42, 70, 105, 210;
5:   11, 22, 33, 55, 66, 77, 110, 154, 165, 231, 330, 385, 462, 770, 1155, 2310;
.
T(4,4) = a(11) = 35, while A019565(11) = 42, since 11_2 = "1011", f(11) = 2*3*7 = 42, but A019565(12) = 35 since 12_2 = "1100", f(12) = 5*7 is smaller than 42, therefore a(11) = 35, and a(12) = 42.
		

Crossrefs

Cf. A019565.

Programs

  • Mathematica
    Flatten@ Table[
      SortBy[Range[2^n, 2^(n + 1) - 1],
        Times @@ Flatten@
          MapIndexed[Prime[#2]^#1 &,
            Reverse@ IntegerDigits[#, 2]] &], {n, 0, 8}]

Formula

Length of row j is 2^(j-1) = A000079(j-1).
T(0,1) = a(0) = 1.
T(j,1) = a(2^(j-1)) = 2^(j-1) + 1.
T(j, 2^(j-1)) = a(2^j - 1) = 2^j.

A103791 Index of the first occurrence of A019565(2n-1) in sequence A103790.

Original entry on oeis.org

2, 4, 8, 29, 24, 78, 65, 90, 449, 280, 400, 124, 935, 589, 1743, 325, 2001, 2863, 3150, 2026, 5680, 5156, 4016, 10403, 22626, 2358, 19242, 14356, 19543, 7666, 20555, 29104, 64045, 56438, 84993, 15346, 37400, 13663, 83487, 58651, 162225, 111880
Offset: 1

Views

Author

Lei Zhou, Feb 16 2005

Keywords

Examples

			A103790(2)=1*2*1-1; => a(1)=2
A103790(4)=3*2*2-1; => a(2)=4
		

Crossrefs

Programs

  • Mathematica
    A019565 = Function[tn, k1 = tn; o = 1; tt = 1; While[k1 > 0, k2 = Mod[k1, 2]; If[k2 == 1, tt = tt*Prime[o]]; k1 = (k1 - k2)/2; o = o + 1]; tt]; Array[fa, {1, 500}]; Do[fa[n] = 0, {n, 1, 500}]; n = 2; npd = Prime[n]; ct = 1; wt = 1; While[wt < 69, cr = (ct + 1)/2; If[fa[cr] == 0, fa[cr] = n; While[fa[wt] > 0, Print[fa[wt]]; wt = wt + 1]]; n = n + 1; npd = Prime[n]; ct = 1; tt = ct; cp = npd + A019565[tt]; While[ ! (PrimeQ[cp]), ct = ct + 1; tt = ct; cp = npd + A019565[tt]]]

A103798 Integers k such that A019565(k)-1 and A019565(k)+1 are both primes.

Original entry on oeis.org

3, 7, 11, 27, 31, 47, 51, 67, 107, 123, 135, 151, 159, 163, 175, 211, 251, 259, 279, 295, 479, 527, 539, 607, 619, 631, 771, 783, 847, 999, 1035, 1051, 1071, 1183, 1279, 1295, 1299, 1323, 1375, 1399, 1411, 1439, 1451, 1479, 1571, 1691, 1715, 1759, 1787, 1991
Offset: 1

Views

Author

Lei Zhou, Feb 22 2005

Keywords

Crossrefs

Programs

  • Maple
    A019565(3) = 6, 5 and 7 are twin primes, so a(1) = 3.
    A019565(7) = 30, 29 and 31 are twin primes, so a(2) = 7.

A103800 Indices n such that A019565(n)-2 is prime.

Original entry on oeis.org

4, 6, 8, 10, 14, 18, 20, 22, 26, 28, 30, 32, 34, 38, 40, 42, 54, 58, 60, 62, 68, 76, 78, 86, 88, 98, 100, 102, 106, 110, 126, 128, 134, 136, 138, 142, 158, 162, 174, 188, 190, 194, 196, 202, 210, 218, 222, 230, 234, 238, 240, 254, 258, 260, 272, 274, 278, 292, 294
Offset: 1

Views

Author

Lei Zhou, Feb 22 2005

Keywords

Examples

			A019565(0)=1, 1-2=-1 is not prime;
A019565(1)=2, 2-2=0 is not prime;
...
A019565(4)=5, 5-2=3 is prime, so a(1)=4;
		

Crossrefs

Programs

  • Mathematica
    A019565 = Function[tn, k1 = tn; o = 1; tt = 1; While[k1 > 0, k2 = Mod[k1, 2]; If[k2 == 1, tt = tt*Prime[o]]; k1 = (k1 - k2)/2; o = o + 1]; tt]; Do[cp = A019565[n] - 2; If[PrimeQ[cp], Print[n]], {n, 0, 1000}]
Previous Showing 91-100 of 340 results. Next