cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A112388 a(n) is the smallest prime p such that p^n contains every digit.

Original entry on oeis.org

10123457689, 101723, 5437, 2339, 1009, 257, 139, 173, 83, 67, 31, 29, 37, 17, 17, 47, 19, 7, 5, 23, 23, 5, 11, 11, 17, 5, 5, 5, 5, 11, 5, 11, 11, 5, 5, 7, 5, 7, 3, 5, 5, 7, 7, 7, 3, 7, 3, 3, 5, 5, 5, 5, 3, 7, 7, 5, 3, 7, 5, 3, 3, 3, 3, 3, 3, 5, 3, 2, 3, 2, 3, 3, 3, 3, 5, 3, 3, 3, 2, 3, 5, 2
Offset: 1

Views

Author

Tanya Khovanova, Dec 05 2005

Keywords

Comments

Conjecture: a(n)=2 for all n>168. Checked up to n = 20000. - Robert Israel, Aug 28 2020

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
      k:= 1:
      do k:= nextprime(k);
        if convert(convert(k^n,base,10),set) = {$0..9} then return k fi
      od
    end proc:
    f(1):= 10123457689:
    map(f, [$1..100]); # Robert Israel, Aug 28 2020
  • Mathematica
    f[n_] := Block[{k = 1}, While[ Union@IntegerDigits[ Prime[k]^n] != {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, k++ ]; Prime[k]]; Array[f, 82] (* Robert G. Wilson v, Dec 06 2005 *)
  • Python
    from sympy import nextprime
    def a(n):
        if n == 1: return 10123457689
        p = 2
        while not(len(set(str(p**n))) == 10): p = nextprime(p)
        return p
    print([a(n) for n in range(1, 83)]) # Michael S. Branicky, Jul 04 2021

Extensions

More terms from Robert G. Wilson v, Dec 06 2005

A305927 Irregular table: row n >= 0 lists all k >= 0 such that the decimal representation of 7^k has n digits '0' (conjectured).

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 10, 11, 19, 35, 4, 5, 8, 12, 14, 15, 18, 27, 43, 47, 51, 9, 16, 17, 20, 24, 26, 28, 29, 34, 38, 52, 93, 13, 21, 22, 23, 30, 31, 36, 37, 42, 44, 46, 49, 58, 25, 32, 33, 50, 53, 54, 59, 66, 122, 55, 56, 57, 61, 62, 64, 67, 72, 73, 74, 39, 40, 48, 60, 71, 77, 79, 96, 108
Offset: 0

Views

Author

M. F. Hasler, Jun 19 2018

Keywords

Comments

The set of (nonempty) rows forms a partition of the nonnegative integers.
Read as a flattened sequence, a permutation of the nonnegative integers.
In the same way, another choice of (basis, digit, base) = (m, d, b) different from (7, 0, 10) will yield a similar partition of the nonnegative integers, trivial if m is a multiple of b.
It remains an open problem to provide a proof that the rows are complete, in the same way as each of the terms of A020665 is unproved.
We can also decide that the rows are to be truncated as soon as no term is found within a sufficiently large search limit. (For all of the displayed rows, there is no additional term up to many orders of magnitude beyond the last term.) That way the rows are well-defined, but it is no longer guaranteed to have a partition of the integers.
The author considers "nice", i.e., appealing, the idea of partitioning the integers in such an elementary yet highly nontrivial way, and the remarkable fact that the rows are just roughly one line long. Will this property remain for large n, or else, how will the row lengths evolve?

Examples

			The table reads:
n \ k's
0 : 0, 1, 2, 3, 6, 7, 10, 11, 19, 35 (= A030703)
1 : 4, 5, 8, 12, 14, 15, 18, 27, 43, 47, 51
2 : 9, 16, 17, 20, 24, 26, 28, 29, 34, 38, 52, 93
3 : 13, 21, 22, 23, 30, 31, 36, 37, 42, 44, 46, 49, 58
4 : 25, 32, 33, 50, 53, 54, 59, 66, 122
5 : 55, 56, 57, 61, 62, 64, 67, 72, 73, 74
...
Column 0 is A063606: least k such that 7^k has n digits '0' in base 10.
Row lengths are 10, 11, 12, 13, 9, 10, 9, 7, 10, 14, 21, 10, 18, 7, 11, 11, 12, 15, 17, 10, ... (A305947).
Last term of the rows are (35, 51, 93, 58, 122, 74, 108, 131, 118, 152, 195, 192, 236, 184, 247, 243, 254, 286, 325, 292, ...), A306117.
The inverse permutation is (0, 1, 2, 3, 10, 11, 4, 5, 12, 21, 6, 7, 13, 33, 14, 15, 22, 23, 16, 8, 24, 34, 35, 36, 25, 46, 26, 17, 27, 28, 37, ...), not in OEIS.
Number of '0's in 7^n = row number of n: (0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 1, 3, 1, 1, 2, 2, 1, 0, 2, 3, 3, 3, 2, 4, 2, 1, 2, 2, 3, 3, 4, 4, ...), not in OEIS.
Number of '0's in 7^n = row number of n: (0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 1, 3, 1, 1, 2, 2, 1, 0, 2, 3, 3, 3, 2, 4, 2, 1, 2, 2, 3, 3, 4, 4, ...), not in OEIS.
		

Crossrefs

Cf. A305932 (analog for 2^k), A305933 (analog for 3^k), A305924 (analog for 4^k), ..., A305929 (analog for 9^k).

Programs

  • Mathematica
    mx = 1000; g[n_] := g[n] = DigitCount[7^n, 10, 0]; f[n_] := Select[Range@mx, g@# == n &]; Table[f@n, {n, 0, 4}] // Flatten (* Robert G. Wilson v, Jun 20 2018 *)
  • PARI
    apply( A305927_row(n,M=50*(n+1))=select(k->#select(d->!d,digits(7^k))==n,[0..M]), [0..19])

A306113 Largest k such that 3^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

68, 73, 136, 129, 205, 237, 317, 268, 251, 276, 343, 372, 389, 419, 565, 416, 494, 571, 637, 628, 713, 629, 638, 655, 735, 690, 862, 802, 750, 863, 826, 996, 976, 1008, 1085, 1026, 1130, 995, 962, 1082, 1136, 1064, 1176, 1084, 1215, 1354, 1298, 1275, 1226, 1468, 1353
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A030700: exponents of powers of 3 without digit 0.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A063555: least k such that 3^k has n digits 0 in base 10.
Cf. A305943: number of k's such that 3^k has n digits 0.
Cf. A305933: row n lists exponents of 3^k with n digits 0.
Cf. A030700: { k | 3^k has no digit 0 } : row 0 of the above.
Cf. A238939: { 3^k having no digit 0 }.
Cf. A305930: number of 0's in 3^n.
Cf. A306112, ..., A306119: analog for 2^k, ..., 9^k.

Programs

  • PARI
    A306113_vec(nMax,M=99*nMax+199,x=3,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}

A306114 Largest k such that 4^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

43, 92, 77, 88, 115, 171, 182, 238, 235, 308, 324, 348, 412, 317, 366, 445, 320, 424, 362, 448, 546, 423, 540, 545, 612, 605, 567, 571, 620, 641, 619, 700, 708, 704, 808, 762, 811, 744, 755, 971, 896, 900, 935, 862, 986, 954, 982, 956, 1057, 1037, 1128
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A030701: exponents of powers of 4 without digit 0 in base 10.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A063575: least k such that 4^k has n digits 0 in base 10.
Cf. A305944: number of k's such that 4^k has n digits 0.
Cf. A305924: row n lists exponents of 4^k with n digits 0.
Cf. A030701: { k | 4^k has no digit 0 } : row 0 of the above.
Cf. A238940: { 4^k having no digit 0 }.
Cf. A020665: largest k such that n^k has no digit 0 in base 10.
Cf. A071531: least k such that n^k contains a digit 0 in base 10.
Cf. A103663: least x such that x^n has no digit 0 in base 10.
Cf. A306112, ..., A306119: analog for 2^k, ..., 9^k.

Programs

  • PARI
    A306114_vec(nMax,M=99*nMax+199,x=4,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}

A306115 Largest k such that 5^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

58, 85, 107, 112, 127, 157, 155, 194, 198, 238, 323, 237, 218, 301, 303, 324, 339, 476, 321, 284, 496, 421, 475, 415, 537, 447, 494, 538, 531, 439, 473, 546, 587, 588, 642, 690, 769, 689, 687, 686, 757, 732, 683, 826, 733, 825, 833, 810, 827, 888, 966
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A008839: exponents of powers of 5 without digit 0 in base 10.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A063585: least k such that 5^k has n digits 0 in base 10.
Cf. A305945: number of k's such that 5^k has n digits 0.
Cf. A305925: row n lists exponents of 5^k with n digits 0.
Cf. A008839: { k | 5^k has no digit 0 } : row 0 of the above.
Cf. A195948: { 5^k having no digit 0 }.
Cf. A020665: largest k such that n^k has no digit 0 in base 10.
Cf. A071531: least k such that n^k contains a digit 0 in base 10.
Cf. A103663: least x such that x^n has no digit 0 in base 10.
Cf. A306112, ..., A306119: analog for 2^k, ..., 9^k.

Programs

  • PARI
    A306115_vec(nMax,M=99*nMax+199,x=5,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}

A306116 Largest k such that 6^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

44, 59, 63, 82, 98, 134, 108, 123, 199, 189, 192, 200, 275, 282, 267, 307, 298, 296, 391, 338, 340, 396, 328, 436, 432, 478, 484, 615, 428, 529, 492, 515, 536, 523, 627, 665, 559, 592, 637, 560, 654, 674, 590, 653, 728, 791, 753, 781, 812, 783, 788
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A030702: exponents of powers of 6 without digit 0 in base 10.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A063596: least k such that 6^k has n digits 0 in base 10.
Cf. A305946: number of k's such that 6^k has n digits 0.
Cf. A305926: row n lists exponents of 6^k with n digits 0.
Cf. A030702: { k | 6^k has no digit 0 } : row 0 of the above.
Cf. A238936: { 6^k having no digit 0 }.
Cf. A020665: largest k such that n^k has no digit 0 in base 10.
Cf. A071531: least k such that n^k contains a digit 0 in base 10.
Cf. A103663: least x such that x^n has no digit 0 in base 10.
Cf. A306112, ..., A306119: analog for 2^k, ..., 9^k.

Programs

  • PARI
    A306116_vec(nMax,M=99*nMax+199,x=6,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}

A306117 Largest k such that 7^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

35, 51, 93, 58, 122, 74, 108, 131, 118, 152, 195, 192, 236, 184, 247, 243, 254, 286, 325, 292, 318, 336, 375, 393, 339, 431, 327, 433, 485, 447, 456, 455, 448, 492, 452, 507, 489, 541, 526, 605, 627, 706, 730, 628, 665, 660, 798, 715, 704, 633, 728
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A030703: exponents of powers of 7 without digit 0 in base 10.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A063606: least k such that 7^k has n digits 0 in base 10.
Cf. A305947: number of k's such that 7^k has n digits 0.
Cf. A305927: row n lists exponents of 6^k with n digits 0.
Cf. A030703: { k | 7^k has no digit 0 } : row 0 of the above.
Cf. A195908: { 7^k having no digit 0 }.
Cf. A020665: largest k such that n^k has no digit 0 in base 10.
Cf. A071531: least k such that n^k contains a digit 0 in base 10.
Cf. A103663: least x such that x^n has no digit 0 in base 10.
Cf. A306112, ..., A306119: analog for 2^k, ..., 9^k.

Programs

  • PARI
    A306117_vec(nMax,M=99*nMax+199,x=7,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}

A306118 Largest k such that 8^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

27, 43, 77, 61, 69, 119, 115, 158, 159, 168, 216, 232, 202, 198, 244, 270, 229, 274, 241, 273, 364, 283, 413, 298, 408, 341, 378, 431, 404, 403, 465, 483, 472, 454, 467, 508, 540, 575, 485, 576, 511, 623, 538, 515, 560, 655, 647, 661, 648, 639, 752
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A030704: exponents of powers of 8 without digit 0 in base 10.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A063616: least k such that 8^k has n digits 0 in base 10.
Cf. A305938: number of k's such that 8^k has n digits 0.
Cf. A305928: row n lists exponents of 8^k with n digits 0.
Cf. A030704: { k | 8^k has no digit 0 } : row 0 of the above.
Cf. A020665: largest k such that n^k has no digit 0 in base 10.
Cf. A071531: least k such that n^k contains a digit 0 in base 10.
Cf. A103663: least x such that x^n has no digit 0 in base 10.
Cf. A306112, ..., A306119: analog for 2^k, ..., 9^k.

Programs

  • PARI
    A306118_vec(nMax,M=99*nMax+199,x=8,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}

A066736 Least number > 1 such that the nonzero product of the digits of its n-th power is also an n-th power.

Original entry on oeis.org

2, 2, 2, 118, 382, 580408, 178758, 12, 1254514, 53067715, 51773525, 314537797, 110242999
Offset: 1

Views

Author

Robert G. Wilson v, Jan 15 2002

Keywords

Comments

The n-th roots of the product of the digits of the n-th power of a(n) are 2, 2, 2, 42, 24, 1440, 2520, 6, 10080. Because the numbers get larger quicker, the available candidates decreases. See A020665. Therefore this sequence might be finite or have a preponderance of blank entries.
If a(14) exists, it is greater than 4*10^8. - Derek Orr, Feb 17 2014
If a(14) exists, it is greater than 5.6*10^10. - Sean A. Irvine, Nov 05 2023

Examples

			382^5 = 8134236862432 and the product of these digits is 7962624 = 24^5 (another fifth power). Since 382 is the smallest number with this property, a(5) = 382.
		

Programs

  • Mathematica
    Do[k = 2; While[a = Apply[Times, IntegerDigits[k^n]]; a == 0 || !IntegerQ[a^(1/n)], k++ ]; Print[k], {n, 1, 10} ]
  • Python
    import sympy
    from sympy import factorint
    def DigitProd(x):
      total = 1
      for i in str(x):
        total *= int(i)
      return total
    def Prod(x):
      n = 2
      while n < 4*(10**8):
        if DigitProd(n**x) != 0 and DigitProd(n**x) != 1:
          count = 0
          for i in list(factorint(DigitProd(n**x)).values()):
            if (int(i)/x) % 1 == 0:
              count += 1
            else:
              break
          if count == len(list(factorint(DigitProd(n**x)).values())):
            return n
          else:
            n += 1
        else:
          n += 1
    x = 1
    while x < 100:
      print(Prod(x))
      x += 1 # Derek Orr, Feb 13 2014

Extensions

a(10)-a(13) from Derek Orr, Feb 13 2014
Previous Showing 31-39 of 39 results.