cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A378054 Numbers k that divide A378053(k) = gcd(Product_{d|k} (d + 1), Product_{d|k, d>1} (d - 1)).

Original entry on oeis.org

1, 60, 90, 120, 144, 168, 180, 210, 240, 252, 280, 336, 360, 420, 504, 540, 560, 630, 660, 720, 840, 900, 924, 990, 1008, 1056, 1080, 1092, 1200, 1260, 1320, 1404, 1440, 1512, 1560, 1680, 1800, 1848, 1872, 1890, 1980, 2016, 2100, 2112, 2160, 2184, 2310, 2376, 2400
Offset: 1

Views

Author

Amiram Eldar, Nov 15 2024

Keywords

Comments

After the first term a(1) = 1, the next odd term is a(71) = 3465, the next term that is coprime to 6 is a(1058) = 95095, and the next term that is coprime to 30 is a(12174) = 2263261.

Examples

			60 is a term since A378053(60) = 166320 = 60 * 2772 is divisible by 60.
		

Crossrefs

Intersection of A056954 and A355331.
A378055 is a subsequence.

Programs

  • Mathematica
    Select[Range[2500], And @@ Divisible[{Times @@ ((d = Divisors[#]) + 1), Times @@ (Rest @ d - 1)}, #] &]
  • PARI
    is(k) = if(k == 1, 1, my(d = divisors(k)); !(gcd(prod(k=1, #d, d[k]+1), prod(k=2, #d, d[k]-1)) % k));

A308820 a(n) = Product_{k=1..n} ceiling(n/k)!.

Original entry on oeis.org

1, 2, 12, 96, 2880, 34560, 5806080, 92897280, 25082265600, 2006581248000, 794606174208000, 19070548180992000, 208250386136432640000, 5831010811820113920000, 4198327784510482022400000, 3224315738504050193203200000, 14799609239733590386802688000000
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 26 2019

Keywords

Crossrefs

Programs

  • Magma
    [(&*[Factorial(Ceiling(n/(n-j+1))): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Mar 08 2023
    
  • Maple
    seq(mul(ceil(n/k)!, k=1..n), n=1..30); # Ridouane Oudra, Apr 10 2023
  • Mathematica
    a[n_] := Product[Ceiling[n/k]!, {k, 1, n}]; Table[a[n], {n, 1, 17}]
  • PARI
    a(n) = prod(k=1, n, ceil(n/k)!); \\ Michel Marcus, Jun 27 2019
    
  • SageMath
    def A308820(n): return product( factorial(ceil(n/(n-k+1))) for k in range(1,n+1))
    [A308820(n) for n in range(1,21)] # G. C. Greubel, Mar 08 2023

Formula

a(n) = Product_{k=1..n-1} Product_{d|k} (d + 1).
a(n) = Product_{k=1..n-1} (k + 1)^floor((n-1)/k). - Ridouane Oudra, Apr 10 2023
a(n) = A131385(n)*A092143(n-1). - Ridouane Oudra, Sep 20 2024

A378055 Numbers k such that k | A378053(k) and (k+1) | A378053(k+1).

Original entry on oeis.org

638000, 13466816, 14753024, 16092999, 19494189, 38137749, 63668079, 80061344, 86119704, 107232255, 112375899, 121550624, 127205000, 154466675, 294147854, 391738599, 553140224, 561712095, 682199595, 728999999, 871651143, 879207615, 911062844, 920985624, 1017609999
Offset: 1

Views

Author

Amiram Eldar, Nov 15 2024

Keywords

Crossrefs

Intersection of A355332 and A377949.
Subsequence of A378054.

Programs

  • Mathematica
    q[n_] := q[n] = And @@ Divisible[{Times @@ ((d = Divisors[n]) + 1), Times @@ (Rest@d - 1)}, n]; Select[Range[2*10^7], q[#] && q[# + 1] &]
  • PARI
    is1(k) = if(k == 1, 1, my(d = divisors(k)); !(gcd(prod(k=1, #d, d[k]+1), prod(k=2, #d, d[k]-1)) % k));
    lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}

A333121 a(1) = 1; a(n+1) = Product_{d|n} (1 + a(d)).

Original entry on oeis.org

1, 2, 6, 14, 90, 182, 7686, 15374, 1383750, 19372514, 10577393190, 21154786382, 2438935322096070, 4877870644192142, 224977149851430019446, 286620888910721844775478, 396611655030211352708069066250, 793223310060422705416138132502, 8436334593920261958919014477018674175558
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Product[1 + a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 19}]
Previous Showing 11-14 of 14 results.