cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A199535 Clark Kimberling's even first column Stolarsky array read by antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 7, 6, 5, 11, 9, 10, 8, 18, 15, 17, 12, 13, 29, 24, 27, 19, 14, 21, 47, 39, 44, 31, 23, 16, 34, 76, 63, 71, 50, 37, 25, 20, 55, 123, 102, 115, 81, 60, 41, 33, 22, 89, 199, 165, 186, 131, 97, 66, 53, 35, 26, 144, 322, 267, 301, 212, 157, 107, 86, 57, 43, 28
Offset: 1

Views

Author

Casey Mongoven, Nov 07 2011

Keywords

Comments

The rows of the array can be seen to have the form A(n, k) = p(n)*Fibonacci(k) + q(n)*Fibonacci(k+1) where p(n) is the sequence {0, 1, 3, 3, 3, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 17, ...}{n >= 1} and q(n) is the sequence {1, 3, 3, 7, 2, 9, 9, 13, 13, 17, 17, 19, 19, 23, 23, 25, ...}{n >= 1}. - G. C. Greubel, Jun 23 2022

Examples

			The even first column stolarsky array (EFC array), northwest corner:
  1......2.....3.....5.....8....13....21....34....55....89...144 ... A000045;
  4......7....11....18....29....47....76...123...199...322...521 ... A000032;
  6......9....15....24....39....63...102...165...267...432...699 ... A022086;
  10....17....27....44....71...115...186...301...487...788..1275 ... A022120;
  12....19....31....50....81...131...212...343...555...898..1453 ... A013655;
  14....23....37....60....97...157...254...411...665..1076..1741 ... A000285;
  16....25....41....66...107...173...280...453...733..1186..1919 ... A022113;
  20....33....53....86...139...225...364...589...953..1542..2495 ... A022096;
  22....35....57....92...149...241...390...631..1021..1652..2673 ... A022130;
Antidiagonal rows (T(n, k)):
   1;
   2,   4;
   3,   7,   6;
   5,  11,   9,  10;
   8,  18,  15,  17, 12;
  13,  29,  24,  27, 19, 14;
  21,  47,  39,  44, 31, 23, 16;
  34,  76,  63,  71, 50, 37, 25, 20;
  55, 123, 102, 115, 81, 60, 41, 33, 22;
		

Crossrefs

Formula

From G. C. Greubel, Jun 23 2022: (Start)
T(n, 1) = A000045(n+1).
T(n, 2) = A000032(n+1), n >= 2.
T(n, 3) = A022086(n) = A097135(n), n >= 3.
T(n, 4) = A022120(n-2), n >= 4.
T(n, 5) = A013655(n-1), n >= 5.
T(n, 6) = A000285(n-2), n >= 6.
T(n, 7) = A022113(n-4), n >= 7.
T(n, 8) = A022096(n-4), n >= 8.
T(n, 9) = A022130(n-6), n >= 9.
T(n, 10) = A022098(n-5), n >= 10.
T(n, 11) = A022095(n-7), n >= 11.
T(n, 12) = A022121(n-8), n >= 12.
T(n, 13) = A022388(n-10), n >= 13.
T(n, 14) = A022122(n-10), n >= 14.
T(n, 15) = A022097(n-10), n >= 15.
T(n, 16) = A022088(n-10), n >= 16.
T(n, 17) = A022390(n-14), n >= 17.
T(n, n) = A199536(n).
T(n, n-1) = A199537(n-1), n >= 2. (End)

Extensions

More terms added by G. C. Greubel, Jun 23 2022

A180251 Decimal expansion of 6*(phi+1)/5, where phi is (1 + sqrt(5))/2.

Original entry on oeis.org

3, 1, 4, 1, 6, 4, 0, 7, 8, 6, 4, 9, 9, 8, 7, 3, 8, 1, 7, 8, 4, 5, 5, 0, 4, 2, 0, 1, 2, 3, 8, 7, 6, 5, 7, 4, 1, 2, 6, 4, 3, 7, 1, 0, 1, 5, 7, 6, 6, 9, 1, 5, 4, 3, 4, 5, 6, 2, 5, 3, 8, 3, 4, 7, 2, 4, 6, 3, 1, 2, 5, 5, 5, 3, 8, 2, 6, 8, 2, 9, 3, 9, 6, 4, 8, 6, 4, 8, 6, 4, 5, 0, 2, 7, 2, 6, 9, 3, 6, 4, 9, 8, 1, 7, 0, 4, 9, 0, 5, 6, 9, 0, 4, 6
Offset: 1

Views

Author

Grant Garcia, Jan 16 2011

Keywords

Comments

This is an approximation to Pi.
6*(phi+1)/5 is not equal to Pi, although some have claimed this (see Dudley). - Kellen Myers, Oct 04 2013

Examples

			3.141640786499873817845504201238765741264371015766915434562538347246312555382...
		

References

  • Underwood Dudley, Mathematical Cranks, MAA 1992, pp. 247, 292.
  • Alfred S. Posamentier and Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, New York, Prometheus Books, 2007, p. 119.

Crossrefs

Programs

Formula

Limit of A022089(n+2)/A022088(n) as n approaches infinity.
6*(phi + 1)/5 = 6*phi^2/5 = 3(3 + sqrt(5))/5 = 9/5 + sqrt(9/5). - Charles R Greathouse IV, Sep 13 2013
Equals 24/(5-sqrt(5))^2. - Joost Gielen, Sep 20 2013

A371843 a(n) = 5*Fibonacci(n) + (-1)^n.

Original entry on oeis.org

1, 4, 6, 9, 16, 24, 41, 64, 106, 169, 276, 444, 721, 1164, 1886, 3049, 4936, 7984, 12921, 20904, 33826, 54729, 88556, 143284, 231841, 375124, 606966, 982089, 1589056, 2571144, 4160201, 6731344, 10891546, 17622889, 28514436, 46137324, 74651761, 120789084, 195440846
Offset: 0

Views

Author

Paul Curtz, Apr 08 2024

Keywords

Examples

			a(3) = 2*4 + 1 = 9. Also a(3) = -1 + 10*1 = 9.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 2, 1}, {1, 4, 6}, 50] (* Amiram Eldar, Apr 11 2024 *)

Formula

a(n) = a(n-2) + A022088(n-1).
a(n) = 2*a(n-2) + a(n-3).
a(n) = A022088(n) + A033999(n).
a(n) = - a(n-3) + 10*A000045(n-1) for n >= 3.
G.f.: (1+2*x)^2/((1+x)*(1-x-x^2)). - Joerg Arndt, Apr 13 2024

A170930 G(n,1) with n index G(n,i)=n*(G(n,i-1)+G(n,i-2))=(a^i-b^i)*d where d=sqrt(n*(n+4)); a=(n+d)/2; b=(n-d)/2.

Original entry on oeis.org

0, 21, 63, 252, 945, 3591, 13608, 51597, 195615, 741636, 2811753, 10660167, 40415760, 153227781, 580930623, 2202475212, 8350217505, 31658078151, 120024886968, 455048895357, 1725221346975, 6540810726996, 24798096221913
Offset: 0

Views

Author

Claudio Peruzzi (claudio.peruzzi(AT)gmail.com), Feb 04 2010

Keywords

Comments

n=1 A022088 n=2 12*A002605 n=3 above n=4 ... new

Examples

			G(n,0)=0 G(n,1)=n*(n+4)
		

Crossrefs

see above

Formula

a(n) = 3*a(n-1)+3*a(n-2) = 21*A030195(n). G.f.: 21*x/(1-3*x-3*x^2). [From R. J. Mathar, Feb 05 2010]

Extensions

More terms from R. J. Mathar, Feb 05 2010

A172011 a(n) = 12*A002605(n).

Original entry on oeis.org

0, 12, 24, 72, 192, 528, 1440, 3936, 10752, 29376, 80256, 219264, 599040, 1636608, 4471296, 12215808, 33374208, 91180032, 249108480, 680577024, 1859371008, 5079896064, 13878534144, 37916860416, 103590789120, 283015299072, 773212176384, 2112454950912
Offset: 0

Views

Author

Claudio Peruzzi (claudio.peruzzi(AT)gmail.com), Jan 22 2010

Keywords

Comments

The case k=2 in a family of sequences a(n)=G(k,n), G(k,0)=0, G(k,1)=k*(k+4), G(k,n)=k*G(k,n-1)+k*G(k,n-2).
The Binet formula is G(k,n) = (c^n-b^n)*d where d=sqrt(k*(k+4)); c=(k+d)/2; b=(k-d)/2.
The generating functions are k*(k+4)*x/(1-k*x-k*x^2).
The case k=1 is A022088.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,2},{0,12},30] (* Harvey P. Dale, Mar 06 2023 *)

Formula

Binet formula: a(n) = 2*2^n*((-1+3^(1/2))^(-n)-(-1)^n*(1+3^(1/2))^(-n))*3^(1/2) .
G.f.: 12*x/(1-2*x-2*x^2). a(n) = 2*a(n-1)+2*a(n-2).

Extensions

Edited and extended by R. J. Mathar, Jan 23 2010

A217762 Square array T, read by antidiagonals: T(n,k) = F(n) + 2*F(k) where F(n) is the n-th Fibonacci number.

Original entry on oeis.org

0, 2, 1, 2, 3, 1, 4, 3, 3, 2, 6, 5, 3, 4, 3, 10, 7, 5, 4, 5, 5, 16, 11, 7, 6, 5, 7, 8, 26, 17, 11, 8, 7, 7, 10, 13, 42, 27, 17, 12, 9, 9, 10, 15, 21, 68, 43, 27, 18, 13, 11, 12, 15, 23, 34, 110, 69, 43, 28, 19, 15, 14, 17, 23, 36, 55, 178, 111, 69, 44, 29, 21
Offset: 0

Views

Author

Philippe Deléham, Apr 07 2013

Keywords

Examples

			Square array begins:
...0....2....2....4....6...10...16...26...42...
...1....3....3....5....7...11...17...27...43...
...1....3....3....5....7...11...17...27...43...
...2....4....4....6....8...12...18...28...44...
...3....5....5....7....9...13...19...29...45...
...5....7....7....9...11...15...21...31...47...
...8...10...10...12...14...18...24...34...50...
..13...15...15...17...19...23...29...39...55...
..21...23...23...25...27...31...37...47...63...
..34...36...36...38...40...44...50...60...76...
..55...57...57...59...61...65...71...81...97...
..89...91...91...93...95...99..105..115..131...
.144..146..146..148..150..154..160..170..186...
...
		

Crossrefs

Formula

T(n,0) = A000045(n).
T(1,k) = A001588(k).
T(n,1) = T(n,2) = A157725(n).
T(n,3) = A157727(n).
T(n,n)= A022086(n) = 3*A000045(n).
T(n+1,n) = A000032(n+1) = A000204(n+1).
T(n+2,n) = A000285(n).
T(n+3,n) = A013655(n+1) = A001060(n+1).
T(n+4,n) = A021120(n).
T(n+5,n) = A022088(n+2) = 5*A000045(n+2).
T(n+6,n) = A022097(n+2).
T(n+7,n) = A022122(n+2).
T(n+8,n) = 3*A013655(n+2).
T(n+9,n) = A097657(n+2).
T(n+10,n) = A022118(n+4).
T(n,n+1) = A000045(n+3).
T(n,n+2) = A013655(n+1) = A001060(n+1).
T(n,n+3) = A000032(n+3).
T(n,n+4) = A022095(n+2).
T(n,n+5) = A022120(n+2).
T(n,n+6) = A022136(n+2).
T(n,n+7) = A022098(n+4).
T(n,n+8) = A022380(n+4).
T(n,n+9) = A206419(n+6).
Sum(T(n-k,k), 0<=k<=n) = 3*A000071(n+2).
Previous Showing 11-16 of 16 results.