cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A187891 a(0)=0, a(1)=5, a(n)=a(n-1)+a(n-2)-1.

Original entry on oeis.org

0, 5, 4, 8, 11, 18, 28, 45, 72, 116, 187, 302, 488, 789, 1276, 2064, 3339, 5402, 8740, 14141, 22880, 37020, 59899, 96918, 156816, 253733, 410548, 664280, 1074827, 1739106, 2813932, 4553037, 7366968, 11920004, 19286971, 31206974, 50493944, 81700917
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{a=0,b=5},Table[c=a+b-1;a=b;b=c,{n,100}]]
    nxt[{a_,b_}]:={b,a+b-1}; NestList[nxt,{0,5},40][[All,1]] (* Harvey P. Dale, Nov 03 2022 *)

Formula

a(n) = 1+A022120(n-2), n>2. - R. J. Mathar, Mar 15 2011
G.f.: -x^2*(-5+6*x) / ( (x-1)*(x^2+x-1) ). - R. J. Mathar, Mar 15 2011

A356807 Tetranacci sequence beginning with 3, 7, 12, 24.

Original entry on oeis.org

3, 7, 12, 24, 46, 89, 171, 330, 636, 1226, 2363, 4555, 8780, 16924, 32622, 62881, 121207, 233634, 450344, 868066, 1673251, 3225295, 6216956, 11983568, 23099070, 44524889, 85824483, 165432010, 318880452, 614661834, 1184798779, 2283773075, 4402114140, 8485347828
Offset: 1

Views

Author

Greg Dresden and Hangyu Liang, Aug 29 2022

Keywords

Comments

By "Tetranacci sequence" we mean a sequence in which each term is the sum of the four previous terms.
For n>1, a(n) is the number of ways to tile this figure of length n with squares, dominoes, trominoes, and tetraminoes:
_
|||_________ _
|||_|||_|| ... ||

Examples

			Here is one of the a(6) = 89 ways to tile this figure of length 6 with tiles of length <= 4, this one using three squares, one domino, and one tromino:
   ___
  | |_|_______
  |_|_____|_|_|
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 1, 1, 1}, {3, 7, 12, 24}, 50] (* Paolo Xausa, Aug 30 2024 *)

Formula

a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4).
a(n) = 5*b(n+2) + 2*b(n+1) - 2*b(n-2) for b(n) = A000078(n) the tetranacci numbers.
a(n) = L(n+2) - F(n-2) + Sum_{k=0..n-3} a(k)*F(n-k-1), for L(n) and F(n) the Lucas and Fibonacci numbers.
G.f.: x*(-2*x^3 - 2*x^2 - 4*x - 3)/(x^4 + x^3 + x^2 + x - 1). - Chai Wah Wu, Aug 30 2022

A217762 Square array T, read by antidiagonals: T(n,k) = F(n) + 2*F(k) where F(n) is the n-th Fibonacci number.

Original entry on oeis.org

0, 2, 1, 2, 3, 1, 4, 3, 3, 2, 6, 5, 3, 4, 3, 10, 7, 5, 4, 5, 5, 16, 11, 7, 6, 5, 7, 8, 26, 17, 11, 8, 7, 7, 10, 13, 42, 27, 17, 12, 9, 9, 10, 15, 21, 68, 43, 27, 18, 13, 11, 12, 15, 23, 34, 110, 69, 43, 28, 19, 15, 14, 17, 23, 36, 55, 178, 111, 69, 44, 29, 21
Offset: 0

Views

Author

Philippe Deléham, Apr 07 2013

Keywords

Examples

			Square array begins:
...0....2....2....4....6...10...16...26...42...
...1....3....3....5....7...11...17...27...43...
...1....3....3....5....7...11...17...27...43...
...2....4....4....6....8...12...18...28...44...
...3....5....5....7....9...13...19...29...45...
...5....7....7....9...11...15...21...31...47...
...8...10...10...12...14...18...24...34...50...
..13...15...15...17...19...23...29...39...55...
..21...23...23...25...27...31...37...47...63...
..34...36...36...38...40...44...50...60...76...
..55...57...57...59...61...65...71...81...97...
..89...91...91...93...95...99..105..115..131...
.144..146..146..148..150..154..160..170..186...
...
		

Crossrefs

Formula

T(n,0) = A000045(n).
T(1,k) = A001588(k).
T(n,1) = T(n,2) = A157725(n).
T(n,3) = A157727(n).
T(n,n)= A022086(n) = 3*A000045(n).
T(n+1,n) = A000032(n+1) = A000204(n+1).
T(n+2,n) = A000285(n).
T(n+3,n) = A013655(n+1) = A001060(n+1).
T(n+4,n) = A021120(n).
T(n+5,n) = A022088(n+2) = 5*A000045(n+2).
T(n+6,n) = A022097(n+2).
T(n+7,n) = A022122(n+2).
T(n+8,n) = 3*A013655(n+2).
T(n+9,n) = A097657(n+2).
T(n+10,n) = A022118(n+4).
T(n,n+1) = A000045(n+3).
T(n,n+2) = A013655(n+1) = A001060(n+1).
T(n,n+3) = A000032(n+3).
T(n,n+4) = A022095(n+2).
T(n,n+5) = A022120(n+2).
T(n,n+6) = A022136(n+2).
T(n,n+7) = A022098(n+4).
T(n,n+8) = A022380(n+4).
T(n,n+9) = A206419(n+6).
Sum(T(n-k,k), 0<=k<=n) = 3*A000071(n+2).
Previous Showing 11-13 of 13 results.