A015121
Triangle of q-binomial coefficients for q=-9.
Original entry on oeis.org
1, 1, 1, 1, -8, 1, 1, 73, 73, 1, 1, -656, 5986, -656, 1, 1, 5905, 484210, 484210, 5905, 1, 1, -53144, 39226915, -352504880, 39226915, -53144, 1, 1, 478297, 3177326971, 257015284435, 257015284435, 3177326971, 478297, 1, 1, -4304672, 257363962948
Offset: 0
Cf. analog triangles for other q:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015123 (q=-10),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
Table[QBinomial[n, k, -9], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
-
T015121(n, k, q=-9)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015123
Triangle of q-binomial coefficients for q=-10.
Original entry on oeis.org
1, 1, 1, 1, -9, 1, 1, 91, 91, 1, 1, -909, 9191, -909, 1, 1, 9091, 918191, 918191, 9091, 1, 1, -90909, 91828191, -917272809, 91828191, -90909, 1, 1, 909091, 9182728191, 917364637191, 917364637191, 9182728191, 909091, 1, 1, -9090909, 918273728191
Offset: 0
Cf. analog triangles for other q:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
Table[QBinomial[n, k, -10], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
-
T015123(n, k, q=-10)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015124
Triangle of q-binomial coefficients for q=-11.
Original entry on oeis.org
1, 1, 1, 1, -10, 1, 1, 111, 111, 1, 1, -1220, 13542, -1220, 1, 1, 13421, 1637362, 1637362, 13421, 1, 1, -147630, 198134223, -2177691460, 198134223, -147630, 1, 1, 1623931, 23974093353, 2898705467483, 2898705467483, 23974093353, 1623931, 1, 1
Offset: 0
Cf. analog triangles for other negative q=-2,...,-15:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015123 (q=-10),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. - M. F. Hasler, Nov 05 2012
-
T015124(n, k, q=-11)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015125
Triangle of q-binomial coefficients for q=-12.
Original entry on oeis.org
1, 1, 1, 1, -11, 1, 1, 133, 133, 1, 1, -1595, 19285, -1595, 1, 1, 19141, 2775445, 2775445, 19141, 1, 1, -229691, 399683221, -4793193515, 399683221, -229691, 1, 1, 2756293, 57554154133, 8283038077141, 8283038077141, 57554154133, 2756293, 1, 1
Offset: 0
Cf. analog triangles for other negative q=-2,...,-15:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015123 (q=-10),
A015124 (q=-11),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
T015125(n, k, q=-12)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015132
Triangle of (Gaussian) q-binomial coefficients for q=-14.
Original entry on oeis.org
1, 1, 1, 1, -13, 1, 1, 183, 183, 1, 1, -2561, 36051, -2561, 1, 1, 35855, 7063435, 7063435, 35855, 1, 1, -501969, 1384469115, -19375002205, 1384469115, -501969, 1, 1, 7027567, 271355444571, 53166390519635, 53166390519635, 271355444571
Offset: 0
Cf. analog triangles for other negative q=-2,...,-15:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015123 (q=-10),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
T015132(n, k, q=-14)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A347489
Irregular triangle read by rows: T(n, k) is the q-multinomial coefficient defined by the k-th partition of n in Abramowitz-Stegun order, evaluated at q = 7.
Original entry on oeis.org
1, 1, 8, 1, 57, 456, 1, 400, 2850, 22800, 182400, 1, 2801, 140050, 1120400, 7982850, 63862800, 510902400, 1, 19608, 6865251, 48177200, 54922008, 2746100400, 19565965350, 21968803200, 156527722800, 1252221782400, 10017774259200, 1, 137257, 336416907, 16531644851, 2691335256
Offset: 1
The number of subspace chains 0 < V_1 < V_2 < (F_7)^3 is 456 = T(3, (1, 1, 1)). There are 57 = A022171(3, 1) choices for a one-dimensional subspace V_1 and, for each of them, 8 = A022171(2, 1) extensions to a two-dimensional subspace V_2.
Triangle begins:
k: 1 2 3 4 5
-----------------------
n=1: 1
n=2: 1 8
n=3: 1 57 456
n=4: 1 400 2850 22800 182400
- R. P. Stanley, Enumerative Combinatorics (vol. 1), Cambridge University Press (1997), Section 1.3.
A347973
Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_7)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 37, 162, 37, 1, 1, 79, 1538, 1538, 79, 1, 1, 159, 13237, 74830, 13237, 159, 1, 1, 291, 102019, 3546909, 3546909, 102019, 291, 1, 1, 508, 708712, 153181682, 1010416196, 153181682, 708712, 508, 1, 1, 843, 4473998, 5954653026, 267444866627
Offset: 0
Triangle begins:
k: 0 1 2 3 4 5
--------------------------
n=0: 1
n=1: 1 1
n=2: 1 5 1
n=3: 1 15 15 1
n=4: 1 37 162 37 1
n=5: 1 79 1538 1538 79 1
There are 8 = A022171(2, 1) one-dimensional subspaces in (F_7)^2. Two of them (<(1, 1)> and <(1, 6)>) are invariant by coordinate swap, while the rest are grouped in orbits of size two. Hence, T(2, 1) = 5.
A156914
Square array T(n, k) = q-binomial(2*n, n, k+1), read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 1, 4, 35, 20, 1, 5, 130, 1395, 70, 1, 6, 357, 33880, 200787, 252, 1, 7, 806, 376805, 75913222, 109221651, 924, 1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432, 1, 9, 2850, 12485095, 200525284806, 1634141006295525, 267598665689058580, 1919209135381395, 12870
Offset: 0
Square array begins as:
1, 1, 1, 1, ...;
2, 3, 4, 5, ...;
6, 35, 130, 357, ...;
20, 1395, 33880, 376805, ...;
70, 200787, 75913222, 6221613541, ...;
252, 109221651, 1506472167928, 1634141006295525, ...;
Antidiagonal triangle begins as:
1;
1, 2;
1, 3, 6;
1, 4, 35, 20;
1, 5, 130, 1395, 70;
1, 6, 357, 33880, 200787, 252;
1, 7, 806, 376805, 75913222, 109221651, 924;
1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432;
-
QBinomial:= func< n,k,q | q eq 1 select Binomial(n, k) else k eq 0 select 1 else (&*[ (1-q^(n-j+1))/(1-q^j): j in [1..k] ]) >;
T:= func< n,k | QBinomial(2*n, n, k+1) >;
[T(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 14 2021
-
T[n_, k_]:= QBinomial[2*n, n, k+1];
Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 14 2021 *)
-
def A156914(n, k): return q_binomial(2*n, n, k+1)
flatten([[A156914(k,n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 14 2021
Comments