A113043 Number of ways you can split the set of the first n primes into two proper subsets of which the sum of one is twice the sum of the other.
0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 255, 0, 766, 0, 2342, 0, 0, 0, 23373, 0, 75005, 0, 243824, 0, 800249, 0, 2643880, 0, 8789565, 0, 29396169, 0, 0, 0, 333867426, 0, 1132658742, 0, 3858864902, 0, 13182921033, 0, 0, 0, 0, 0, 537690715092, 0
Offset: 1
Keywords
Links
- Alois P. Heinz and Ray Chandler, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A022894.
Programs
-
Maple
A113043:=proc(n) local i,j,p,t; t:=0; for j from 2 to n do p:=1; for i to j do p:=p*(x^(-2*ithprime(i))+x^(ithprime(i))); od; t:=t,coeff(p,x,0); od; t; end; # second Maple program: sp:= proc(n) option remember; `if`(n=1, 2, sp(n-1) +ithprime(n)) end: b:= proc() option remember; local i, j, t; `if`(args[1]=0, `if`(nargs=2, 1, b(args[t] $t=2..nargs)), add(`if`(args[j] -ithprime(args[nargs]) <0, 0, b(sort([seq(args[i] -`if`(i=j, ithprime(args[nargs]), 0), i=1..nargs-1)])[], args[nargs]-1)), j=1..nargs-1)) end: a:= proc(n) local m; m:= sp(n); `if`(irem(m,3)=0, b(m/3, 2*m/3, n),0) end: seq(a(n), n=1..70); # Alois P. Heinz, Sep 06 2009
-
Mathematica
d = {1}; nMax = 100; Lst = {}; Do[ p = Prime[n]; d = PadLeft[d, Length[d] + 3 p] + PadRight[d, Length[d] + 3 p]; AppendTo[Lst, d[[-Ceiling[Length[d]/3]]]]; , {n, 1, nMax}]; Lst (* Ray Chandler, Mar 09 2014 *)
Extensions
Extended beyond a(40) by Alois P. Heinz, Sep 06 2009
Comments