cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-83 of 83 results.

A333813 a(n) = 2^(1 + floor(n*log_2(3))) - (3^n + 1).

Original entry on oeis.org

0, 0, 6, 4, 46, 12, 294, 1908, 1630, 13084, 6486, 84996, 517134, 502828, 3605638, 2428308, 24062142, 5077564, 149450422, 985222180, 808182894, 6719515980, 2978678758, 43295774644, 267326277406, 252223018332, 1856180682774, 1170495537220
Offset: 0

Views

Author

Ctibor O. Zizka, Apr 06 2020

Keywords

Comments

For integers X, Y, let a(n) = (X^(t+1) - 1) / (X - 1) - Y^n, where t = floor(n*log_X(Y)) . This sequence is for X = 2, Y = 3.

Examples

			a(0) = 2^(1 + floor(0*log_2(3))) - (3^0 + 1) = 0; a(4) = 2^(1 + floor(4*log_2(3))) - (3^4 + 1) = 46.
		

Crossrefs

Examples for integers X = Y from {2, 3, 4, 5, 6, 7, 8, 9, 10} are A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275. Examples for X = 2, Y = 4 are A024036; for X = 2, Y = 8, A024088; and for X = 3, Y = 9, A191681.

Programs

  • Mathematica
    Table[2^(1+Floor[n Log2[3]])-(3^n+1),{n,0,30}] (* Harvey P. Dale, Sep 04 2023 *)

Formula

a(n) = 2^(1 + floor(n*log_2(3))) - (3^n + 1).

A360965 Array T(n,m) = (2^(n*m)-1)/(2^m-1) read by antidiagonals, n,m>=1.

Original entry on oeis.org

1, 1, 3, 1, 5, 7, 1, 9, 21, 15, 1, 17, 73, 85, 31, 1, 33, 273, 585, 341, 63, 1, 65, 1057, 4369, 4681, 1365, 127, 1, 129, 4161, 33825, 69905, 37449, 5461, 255, 1, 257, 16513, 266305, 1082401, 1118481, 299593, 21845, 511, 1, 513, 65793, 2113665, 17043521, 34636833, 17895697, 2396745, 87381, 1023
Offset: 1

Views

Author

R. J. Mathar, Feb 27 2023

Keywords

Examples

			The array starts in rows n>=1 and columns m>=1 as
   1    1    1     1       1
   3    5    9    17      33
   7   21   73   273    1057
  15   85  585  4369   33825
  31  341 4681 69905 1082401
		

Crossrefs

Cf. A000225 (first col), A002450 (2nd col), A023001 (3rd col)

Formula

T(n,m) = (2^(n*m)-1)/(2^m-1) for n>1.

A378931 Triangle read by rows, based on products of Jacobsthal numbers (A001045).

Original entry on oeis.org

1, -1, 3, -2, -9, 15, -4, -18, -25, 55, -8, -36, -50, -121, 231, -16, -72, -100, -242, -441, 903, -32, -144, -200, -484, -882, -1849, 3655, -64, -288, -400, -968, -1764, -3698, -7225, 14535, -128, -576, -800, -1936, -3528, -7396, -14450, -29241, 58311, -256, -1152, -1600, -3872, -7056, -14792, -28900, -58482, -116281, 232903
Offset: 1

Views

Author

Werner Schulte, Dec 11 2024

Keywords

Comments

Let M = T^(-1) be matrix inverse of T seen as a lower triangular matrix. M is a harmonic triangle with M(n, k) = 1 / A084175(n) if k = n, and 1 / A378676(k) if 1 <= k < n. Triangle M(n, k) for 1 <= k <= n starts:
1/1
1/3 1/3
1/3 1/5 1/15
1/3 1/5 1/33 1/55
1/3 1/5 1/33 1/105 1/231
1/3 1/5 1/33 1/105 1/473 1/903
etc.
Sum_{k=1..n} M(n, k) * 2^(k-1) = 1.
Sum_{k=1..n} M(n, k) * (-2)^(k-1) = (-1)^(n-1) / A001045(n+1).
Sum_{k=1..n} 2^(k-1) / M(n, k) = (8^n - 1) / 7 = A023001(n).

Examples

			Triangle T(n, k) for 1 <= k <= n starts:
n\k :     1     2     3      4      5      6       7       8      9
===================================================================
  1 :     1
  2 :    -1     3
  3 :    -2    -9    15
  4 :    -4   -18   -25     55
  5 :    -8   -36   -50   -121    231
  6 :   -16   -72  -100   -242   -441    903
  7 :   -32  -144  -200   -484   -882  -1849    3655
  8 :   -64  -288  -400   -968  -1764  -3698   -7225   14535
  9 :  -128  -576  -800  -1936  -3528  -7396  -14450  -29241  58311
  etc.
		

Crossrefs

A084175 (main diagonal), A139818 (1st subdiagonal), A000079 (column 1 and row sums).

Programs

  • Mathematica
    T[n_,k_]:=If[k==n, (2*4^n-(-2)^n-1)/9, -2^(n-1-k)*(2^(k+1)+(-1)^k)^2/9]; Table[T[n,k],{n,10},{k,n}]//Flatten (* Stefano Spezia, Dec 11 2024 *)
  • PARI
    T(n,k)=if(k==n,(2*4^n-(-2)^n-1)/9,-2^(n-1-k)*(2^(k+1)+(-1)^k)^2/9)

Formula

T(n, n) = (2 * 4^n - (-2)^n - 1) / 9 = A084175(n), and T(n, k) = -2^(n-1-k) * (2^(k+1) + (-1)^k)^2 / 9 for 1 <= k < n.
G.f.: x*t * (1 - 3*t - 6*x*t^2 + 8*x^2*t^3) / ((1 - 2*t) * (1 - x*t) * (1 + 2*x*t) * (1 - 4*x*t)).
Previous Showing 81-83 of 83 results.