cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A204504 A204512(n)^2 = floor[A055872(n)/8]: Squares such that appending some digit in base 8 yields another square.

Original entry on oeis.org

0, 0, 0, 1, 4, 36, 144, 1225, 4900, 41616, 166464, 1413721, 5654884, 48024900, 192099600, 1631432881, 6525731524, 55420693056, 221682772224, 1882672131025, 7530688524100, 63955431761796, 255821727047184, 2172602007770041, 8690408031080164, 73804512832419600
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-8 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9),
A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7),
A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5),
A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3),
A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=8;for(n=1,2e9,issquare(n^2\b) & print1((n^2\b)","))
    
  • PARI
    a(n)=polcoeff(x^4*(1 + 4*x + x^2 + 4*x^3)/(1 - 35*x^2 + 35*x^4 - x^6+O(x^n)), n)

Formula

a(n)=A204512(n)^2.
G.f. = x^4*(1 + 4*x + x^2 + 4*x^3)/(1 - 35*x^2 + 35*x^4 - x^6)

A204575 Squares such that [a(n)/2] is again a square (A055792), written in binary.

Original entry on oeis.org

0, 1, 1001, 100100001, 10011001001001, 1010001010010000001, 101011001001001011001001, 10110111001100110101000100001, 1100001001111011011000010110001001, 110011100111010101001010101001000000001
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

A204576 Floor[A055792(n-1)/2]=A084703(n-2) (truncated squares), written in binary.

Original entry on oeis.org

0, 0, 100, 10010000, 1001100100100, 101000101001000000, 10101100100100101100100, 1011011100110011010100010000, 110000100111101101100001011000100, 11001110011101010100101010100100000000, 1101101100101100000000000111010111101000100
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Comments

A204575 with the last (binary) digit (necessarily = 1, except for a(1)=0) deleted.
Also: Squares, written in binary, such that appending a (binary) digit (necessarily = 1) yields another square (except for a(1)=0 which corresponds to A204575(1)=00, the only square which remains square when multiplied by 2).

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

A204513 A204517(n)^2 = floor[A055859(n)/7]: Squares which written in base 7, with some digit appended, yield another square.

Original entry on oeis.org

0, 0, 0, 1, 9, 36, 289, 2304, 9216, 73441, 585225, 2340900, 18653761, 148644864, 594579456, 4737981889, 37755210249, 151020840996, 1203428746081, 9589674758400, 38358699033600, 305666163522721, 2435739633423369, 9742958533693476, 77638002106025089, 618668277214777344, 2474673108859109376, 19719746868766849921, 157139306672920022025, 628557226691680088100, 5008738066664673854881, 39912765226644470817024, 159651060906577883268096
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-7 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=7;for(n=0,200,issquare(n^2\b) & print1(n^2\b,","))
    
  • PARI
    A204513(n)=polcoeff((x^4 + 9*x^5 + 36*x^6 + 34*x^7 + 9*x^8 + 36*x^9 + x^10)/(1 - 255*x^3 + 255*x^6 - x^9+O(x^n)),n)

Formula

G.f. = (x^4 + 9*x^5 + 36*x^6 + 34*x^7 + 9*x^8 + 36*x^9 + x^10)/(1 - 255*x^3 + 255*x^6 - x^9)

A204577 Sqrt(floor[A204575(n)/2]), written in binary.

Original entry on oeis.org

0, 0, 10, 1100, 1000110, 110011000, 100101001010, 11011000100100, 10011101110001110, 1110010111100110000, 1010011101111110010010, 111101000000111000111100, 101100011100111010111010110
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

A224955 Numbers that are not squares, but can become squares by prepending or appending one additional digit.

Original entry on oeis.org

2, 3, 5, 6, 8, 10, 12, 14, 19, 21, 22, 24, 28, 29, 32, 40, 41, 44, 48, 52, 56, 57, 61, 62, 67, 69, 72, 76, 78, 84, 89, 90, 96, 102, 108, 115, 116, 122, 129, 136, 152, 156, 160, 168, 176, 184, 193, 202, 209, 211, 216, 220, 230, 240, 241, 249, 250, 260, 270, 280
Offset: 1

Views

Author

Keywords

Comments

There are potentially 15 ways for each number to become a square--by prepending a digit between 1 and 9, or appending one of {0,1,4,5,6,9}. However, only 74 of the first 10000 terms can become a square in more than one way.

Examples

			a(4)=6 because, though 6 is not a square, it can become a square by prepending a 1 to become 16. We can also obtain 36 and 64.
		

Crossrefs

Programs

  • Maple
    isA224955 := proc(n)
        local p,ndgs;
        if issqr(n) then
            return false;
        else
            ndgs := convert(n,base,10) ;
            for p from 1 to 9 do
                [op(ndgs),p] ;
                add(op(i,%)*10^(i-1),i=1..nops(%)) ;
                if issqr(%) then
                    return true;
                end if;
            end do:
            for p in {0,1,4,5,6,9} do
                [p,op(ndgs)] ;
                add(op(i,%)*10^(i-1),i=1..nops(%)) ;
                if issqr(%) then
                    return true;
                end if;
            end do:
            return false;
        end if;
    end proc:
    n := 1;
    c := 1;
    while n <= 10000 do
        if isA224955(c) then
            printf("%d %d\n",n,c) ;
            n := n+1 ;
        end if;
        c := c+1 ;
    end do: # R. J. Mathar, Mar 14 2016
  • Mathematica
    Module[{nn=300,pre=Range[9],app={0,1,4,5,6,9}},Select[Range[nn],(!IntegerQ[ Sqrt[ #]]) && (AnyTrue[Sqrt[pre*10^IntegerLength[#]+#],IntegerQ] || AnyTrue[ Sqrt[ 10#+app],IntegerQ])&]] (* Harvey P. Dale, Feb 27 2022 *)

A203719 A204521(n)^2 = floor[A055812(n)/5]: Squares which written in base 5, with some digit appended, yield another square.

Original entry on oeis.org

0, 0, 0, 1, 9, 16, 64, 441, 3025, 5184, 20736, 142129, 974169, 1669264, 6677056, 45765225, 313679521, 537497856, 2149991424, 14736260449, 101003831721, 173072640400, 692290561600, 4745030099481, 32522920134769, 55728852710976, 222915410843904
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Comments

Base-5 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=5;for(n=0,1e7,issquare(n^2\b) & print1(n^2\b,","))

Formula

Conjecture: a(n) = 323*a(n-4)-323*a(n-8)+a(n-12) for n>13. - Colin Barker, Sep 20 2014
Empirical g.f.: -x^4*(x^9 +9*x^8 +64*x^7 +16*x^6 +118*x^5 +118*x^4 +64*x^3 +16*x^2 +9*x +1) / ((x -1)*(x +1)*(x^2 -4*x -1)*(x^2 +1)*(x^2 +4*x -1)*(x^4 +18*x^2 +1)). - Colin Barker, Sep 20 2014

Extensions

More terms from Colin Barker, Sep 20 2014

A204573 A204519(n)^2 = floor(A055851(n)/6): Squares which written in base 6, with some digit appended, yield another square.

Original entry on oeis.org

0, 0, 0, 1, 4, 16, 121, 400, 1600, 11881, 39204, 156816, 1164241, 3841600, 15366400, 114083761, 376437604, 1505750416, 11179044361, 36887043600, 147548174400, 1095432263641, 3614553835204, 14458215340816, 107341182792481, 354189388806400, 1416757555225600
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Comments

Base-6 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=6;for(n=0,1e7,issquare(n^2\b) & print1(n^2\b,","))

Formula

Conjecture: a(n) = 99*a(n-3)-99*a(n-6)+a(n-9) for n>10. - Colin Barker, Sep 20 2014
Empirical g.f.: -x^4*(x^6+16*x^5+4*x^4+22*x^3+16*x^2+4*x+1) / ((x-1)*(x^2+x+1)*(x^6-98*x^3+1)). - Colin Barker, Sep 20 2014

A204574 Numbers such that floor[a(n)^2/2] is a square (A001541), written in binary.

Original entry on oeis.org

0, 1, 11, 10001, 1100011, 1001000001, 110100100011, 100110010010001, 11011111001000011, 10100010100100000001, 1110110011011111000011, 1010110010010010110010001, 111110110111010100110100011, 101101110011001101010001000001
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).
Previous Showing 21-29 of 29 results.