cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 93 results. Next

A024325 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = A001950 (upper Wythoff sequence).

Original entry on oeis.org

0, 0, 5, 7, 10, 13, 15, 18, 33, 38, 44, 48, 54, 60, 64, 70, 98, 106, 114, 121, 130, 137, 145, 153, 160, 169, 213, 223, 233, 244, 255, 265, 275, 286, 297, 307, 317, 328, 391, 403, 416, 430, 442, 456, 469, 481, 496, 508, 521, 534, 547, 561, 644, 659, 675, 690, 707, 722, 737, 755
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023531:= func< n | IsIntegral( (Sqrt(8*n+9) -3)/2 ) select 1 else 0 >;
    A024325:= func< n | (&+[A023531(j)*Floor((n-j+1)*(3+Sqrt(5))/2): j in [1..Floor((n+1)/2)]]) >;
    [A024325(n) : n in [1..80]]; // G. C. Greubel, Jan 28 2022
    
  • Mathematica
    A023531[n_] := SquaresR[1, 8n+9]/2;
    a[n_]:= a[n]= Sum[A023531[j]*Floor[(n-j+1)*GoldenRatio^2], {j,Floor[(n+1)/2]}];
    Table[a[n], {n, 80}] (* G. C. Greubel, Jan 28 2022 *)
  • Sage
    def A023531(n):
        if ((sqrt(8*n+9) -3)/2).is_integer(): return 1
        else: return 0
    def A023325(n): return sum( A023531(j)*floor(((n-j+1)*(3+sqrt(5)))/2) for j in (1..((n+1)//2)) )
    [A023325(n) for n in (1..80)] # G. C. Greubel, Jan 28 2022

Formula

a(n) = Sum_{j=1..floor((n+1)/2)} A023531(j)*A001950(n-j+1).

A024326 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = A023533.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 120;
    A023533:= A023533 = With[{ms= Table[m(m+1)(m+2)/6, {m, 0, nmax+5}]}, Table[If[MemberQ[ms, n], 1, 0], {n, 0, nmax+5}]];
    AbsoluteTiming[Table[t=0; m=3; p=BitShiftRight[n]; n--; While[n>p, t += A023533[[n + 1]]; n -= m++]; t, {n, nmax}]] (* G. C. Greubel, Jan 29 2022  *)
  • Sage
    nmax=120
    @CachedFunction
    def A023531(n):
        if ((sqrt(8*n+9) -3)/2).is_integer(): return 1
        else: return 0
    @CachedFunction
    def B_list(N):
        A = []
        for m in range(ceil((6*N)^(1/3))):
            A.extend([0]*(binomial(m+2, 3) -len(A)) +[1])
        return A
    A023533 = B_list(nmax+5)
    @CachedFunction
    def A023324(n): return sum( A023531(j)*A023533[n-j+1] for j in (1..((n+1)//2)) )
    [A023324(n) for n in (1..nmax)] # G. C. Greubel, Jan 29 2022

Formula

a(n) = Sum_{j=1..floor((n+1)/2)} A023531(j)*A023533(n-j+1).

A024327 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor( (n+1)/2 ), s = A023531, t = A014306.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 4, 3, 4, 4, 4, 4, 3, 4, 4, 3, 4, 4, 3, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 6, 5, 6, 6, 5, 6, 6, 5, 5, 6, 6, 5, 6, 6, 6, 6, 5, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 6, 7, 7, 6, 7, 8, 7, 8, 7
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    A014306:= With[{ms= Table[m(m+1)(m+2)/6, {m,0,20}]}, Table[If[MemberQ[ms, n], 0, 1], {n,0,150}]];
    Table[t=0; m=3; p=BitShiftRight[n]; n--; While[n>p, t += A014306[[n+1]]; n -= m++]; t, {n, 120}] (* G. C. Greubel, Feb 17 2022 *)
  • Sage
    nmax=120
    @CachedFunction
    def b_list(N):
        A = []
        for m in range(ceil((6*N)^(1/3))):
            A.extend([0]*(binomial(m+2, 3) - len(A)) + [1])
        return A
    A023533 = b_list(nmax+5)
    def A014306(n): return 1 - A023533[n]
    def b(n, j): return A014306(n-j+1) if ((sqrt(8*j+9) -3)/2).is_integer() else 0
    @CachedFunction
    def A024327(n): return sum( b(n, j) for j in (1..floor((n+1)/2)) )
    [A024327(n) for n in (1..nmax)] # G. C. Greubel, Feb 17 2022

Formula

a(n) = Sum_{k=1..floor((n+1)/2)} A023531(k)*A014306(n-k+1). - G. C. Greubel, Feb 17 2022

Extensions

Title corrected by Sean A. Irvine, Jun 30 2019

A024328 a(n) = Sum_{j=1..floor((n+1)/2)} A023531(j)*prime(n-j+1).

Original entry on oeis.org

0, 0, 3, 5, 7, 11, 13, 17, 30, 36, 46, 50, 60, 70, 74, 84, 117, 131, 139, 157, 171, 177, 193, 207, 221, 237, 294, 310, 330, 348, 360, 390, 408, 424, 448, 470, 486, 506, 611, 625, 653, 673, 699, 739, 761, 781, 803, 835, 863, 891, 925, 953, 1078, 1104, 1136, 1180, 1214, 1244, 1270
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A023531 (characteristic function of {n(n+3)/2}).

Programs

  • Magma
    b:= func< n, j | IsIntegral((Sqrt(8*j+9) -3)/2) select NthPrime(n-j+1) else 0 >;
    A024328:= func< n | (&+[b(n, j): j in [1..Floor((n+1)/2)]]) >;
    [A024328(n) : n in [1..120]]; // G. C. Greubel, Feb 17 2022
    
  • Mathematica
    Table[t=0; m=3; p=BitShiftRight[n]; n--; While[n>p, t += Prime[n]; n -= m++]; t, {n, 120}] (* G. C. Greubel, Feb 17 2022 *)
  • PARI
    A024328(n)=sum(j=1, (n+1)\2, A023531(j)*prime(n-j+1)) \\ M. F. Hasler, Apr 12 2018
    
  • Sage
    def b(n, j): return nth_prime(n-j+1) if ((sqrt(8*j+9) -3)/2).is_integer() else 0
    @CachedFunction
    def A024327(n): return sum( b(n, j) for j in (1..floor((n+1)/2)) )
    [A024327(n) for n in (1..120)] # G. C. Greubel, Feb 17 2022

Formula

a(n) = Sum_{j=1..floor((n+1)/2)} A023531(j)*prime(n-j+1).

Extensions

Name edited by M. F. Hasler, Apr 12 2018

A134673 A051731 + A127448 - I where I is the Identity matrix (A023531).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 1, -1, 0, 4, 0, 0, 0, 0, 5, 2, -1, -2, 0, 0, 6, 0, 0, 0, 0, 0, 0, 7, 1, 1, 0, -3, 0, 0, 0, 8, 1, 0, -2, 0, 0, 0, 0, 0, 9, 2, -1, 0, 0, -4, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 3, 1, -3, 0, -5, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 2, -1
Offset: 1

Views

Author

Gary W. Adamson, Nov 05 2007

Keywords

Comments

Row sums = A073757: (1, 2, 3, 4, 5, 5, 7, 7, 8, 7, ...).

Examples

			First few rows of the triangle:
  1;
  0,  2;
  0,  0,  3;
  1, -1,  0,  4;
  0,  0,  0,  0,  5;
  2, -1, -2,  0,  0,  6;
  0,  0,  0,  0,  0,  0,  7;
  1,  1,  0, -3,  0,  0,  0,  8;
  ... [Typo corrected by _N. J. A. Sloane_, May 22 2010]
		

Crossrefs

Programs

Formula

a(n) = A051731(n) + A127448(n) - A023531(n).
T(n,k) = k*A008683(n/k) + 1 if k divides n and k < n, T(n,k)=n for k=n, and T(n,k)=0 otherwise. - Max Alekseyev, Jan 07 2015

Extensions

More terms from Max Alekseyev, Apr 03 2022

A155029 Complement to A051731 with the identity matrix A023531 included.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Mats Granvik, Jan 19 2009

Keywords

Examples

			Table begins:
  1;
  0, 1;
  0, 1, 1;
  0, 0, 1, 1;
  0, 1, 1, 1, 1;
  0, 0, 0, 1, 1, 1;
  0, 1, 1, 1, 1, 1, 1;
  0, 0, 1, 0, 1, 1, 1, 1;
  0, 1, 0, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Programs

  • Magma
    [k eq n select 1 else (k eq 0 or n mod k eq 0) select 0 else 1: k in [1..n], n in [1..20]]; // G. C. Greubel, Mar 07 2021
  • Mathematica
    Table[If[k==n, 1, If[k==0, 0, If[Mod[n, k]==0, 0, 1]]], {n, 20}, {k, n}]//Flatten (* G. C. Greubel, Mar 07 2021 *)
  • Sage
    flatten([[1 if k==n else 0 if (k==0 or n%k==0) else 1 for k in [1..n]] for n in [1..20]]) # G. C. Greubel, Mar 07 2021
    

Formula

T(n, k) = 0 if n==0 (mod k) otherwise 1 with T(n, n) = 1 and T(n, 1) = 0. - G. C. Greubel, Mar 07 2021

A023565 Convolution of A023531 and A023533.

Original entry on oeis.org

0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 1, 1, 0, 2, 0, 0, 1, 1, 0, 1, 1, 0, 2, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 2, 0, 1, 2, 0, 0, 0, 1, 2, 0, 1, 1, 1, 0, 0, 0, 0, 1, 3, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023531:= func< n | IsIntegral((Sqrt(8*n+9) - 3)/2) select 1 else 0 >;
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    [(&+[A023533(k)*A023531(n+1-k): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Jul 16 2022
    
  • Mathematica
    A023531[n_]:= If[IntegerQ[(Sqrt[8*n+9] -3)/2], 1, 0];
    A023533[n_]:= If[Binomial[Floor[Surd[6*n-1, 3]] +2, 3] != n, 0, 1];
    A023565[n_]:= A023565[n]= Sum[A023533[k]*A023531[n-k+1], {k,n}];
    Table[A023565[n], {n,100}] (* G. C. Greubel, Jul 16 2022 *)
  • SageMath
    @CachedFunction
    def A023531(n): return 1 if ((sqrt(8*n+9) -3)/2).is_integer()  else 0
    @CachedFunction
    def A023533(n): return 0 if binomial( floor((6*n-1)^(1/3)) +2, 3)!=n else 1
    [sum(A023533(k)*A023531(n-k+1) for k in (1..n)) for n in (1..100)] # G. C. Greubel, Jul 16 2022

Formula

a(n) = Sum_{j=1..n} A023533(j) * A023531(n-j+1). - G. C. Greubel, Jul 16 2022

A023567 Convolution of A023531 and primes.

Original entry on oeis.org

0, 2, 3, 5, 9, 14, 18, 24, 32, 39, 51, 57, 71, 85, 94, 108, 124, 142, 152, 176, 193, 205, 229, 249, 271, 295, 315, 336, 364, 386, 408, 444, 468, 490, 526, 561, 583, 617, 663, 681, 717, 745, 781, 831, 862, 894, 924, 968, 1006, 1050, 1100, 1138, 1174
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    Primes:= select(isprime, [2,seq(i,i=3..1000,2)]):
    seq(add(Primes[n - i*(i+3)/2],i=1..floor((sqrt(1+8*n)-3)/2)), n=2..nops(Primes)); # Robert Israel, Dec 28 2015
  • PARI
    vector(20,x,c=0;j=x;t=3;while(j>1,c+=prime(j-1);j-=t;t+=1);c)

Formula

a(n) = Sum_{i=0..n-1} A023531(n-i)*p(i+1) where p(i) is the i-th prime.

Extensions

Corrected (term 781 was missing) by Jeremy Gardiner, Feb 05 2014

A024889 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A023531, t = A023533.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{j=2..floor(n/2)} A023531(k)*A023533(n-k+1).

A024890 a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = [ n/2 ], s = A023531, t = A014306.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 4, 3, 4, 4, 3, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 6, 6, 5, 6, 6, 5, 5, 6, 6, 5, 6, 6, 6, 6, 5, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 6, 7, 7, 6, 7, 7, 7, 8, 7, 8, 7, 8, 8, 8, 8, 7, 8, 7, 8, 8, 8, 7, 8, 8, 8, 8, 9, 8, 8, 9, 9, 9
Offset: 2

Views

Author

Keywords

Extensions

a(102) onward corrected by Sean A. Irvine, Jul 27 2019
Previous Showing 11-20 of 93 results. Next