cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A302450 Expansion of Product_{k>=1} 1/(1 - x^k)^(k^2*(2*k^2-1)).

Original entry on oeis.org

1, 1, 29, 182, 1084, 6593, 38878, 215937, 1169023, 6165895, 31737691, 159687840, 787536537, 3813036605, 18150405546, 85041775660, 392633910788, 1787993210106, 8037704764044, 35695268298904, 156708949403719, 680526030379206, 2924839092347883, 12447506657030287
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 08 2018

Keywords

Comments

Euler transform of A002593.

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Product[1/(1 - x^k)^(k^2 (2 k^2 - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^3 (2 d^2 - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 23}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A002593(k).
a(n) ~ exp(2^(5/3) * 3^(2/3) * Pi * n^(5/6) / (5 * 7^(1/6)) - Pi * sqrt(7*n) / 60 - 7^(7/6) * Pi * n^(1/6) / (1600 * 6^(2/3)) + Zeta(3) / (4*Pi^2) + 3*Zeta(5) / (2*Pi^4)) / (6^(2/3) * 7^(1/12) * n^(7/12)). - Vaclav Kotesovec, Apr 08 2018

A303168 Expansion of Product_{k>=1} 1/(1 - x^(k^3))^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 10, 10, 10, 13, 13, 13, 13, 13, 18, 18, 18, 24, 24, 24, 24, 24, 30, 30, 30, 39, 39, 39, 39, 39, 46, 46, 46, 58, 58, 58, 64, 64, 72, 72, 72, 87, 87, 87, 99, 99, 112, 112, 112, 130, 130, 130, 148, 148, 166, 166, 166, 187
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Comments

Number of partitions of n into 1 kind of part 1, 2 kinds of part 8, 3 kinds of part 27, ..., k kinds of part k^3.

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[Product[1/(1 - x^k^3)^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^A000578(k))^k.
Previous Showing 21-22 of 22 results.