cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 56 results. Next

A322546 Numbers k such that every integer partition of k contains a 1 or a prime power.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23
Offset: 1

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Examples

			24 does not belong to the sequence because there are integer partitions of 24 containing no 1's or prime powers, namely: (24), (18,6), (14,10), (12,12), (12,6,6), (6,6,6,6).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[n==1||PrimePowerQ[n],1,1/(1-x^n)],{n,nn}];
    Join@@Position[CoefficientList[Series[ser,{x,0,nn}],x],0]-1

A322547 Numbers k such that every integer partition of k contains a 1, a squarefree number, or a prime power.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 59, 61, 67, 71, 79
Offset: 1

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Examples

			48 does not belong to the sequence because there are integer partitions of 48 containing no 1's, squarefree numbers, or prime powers, namely: (48), (36,12), (28,20), (24,24), (24,12,12), (18,18,12), (12,12,12,12).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[PrimePowerQ[n]||SquareFreeQ[n],1,1/(1-x^n)],{n,nn}];
    Join@@Position[CoefficientList[Series[ser,{x,0,nn}],x],0]-1

A328556 Expansion of Product_{p prime, k>=1} (1 - x^(p^k)).

Original entry on oeis.org

1, 0, -1, -1, -1, 0, 1, 1, 0, 0, 1, 1, 1, 0, -1, -1, -2, -1, 0, 0, 1, 1, 0, -1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, -3, -3, -1, 1, 1, 0, -1, -1, 2, 2, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, 0, -2, -3, -1, -1, 0, 2, 0, 1, 3, 0, 1, 3, 1, -3, -2, -3, -2, 3, 2, -1, 0, -2, 1, 1, -2, -1, 1, 2, 2, 3, -1, -2, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 01 2019

Keywords

Comments

Convolution inverse of A023894.
The difference between the number of partitions of n into an even number of distinct prime power parts and the number of partitions of n into an odd number of distinct prime power parts (1 excluded).
Conjecture: the last zero (38th) occurs at n = 340.

Crossrefs

Programs

  • Maple
    N:= 100: # for a(0)..a(N)
    R:= 1:
    p:= 1:
    do
      p:= nextprime(p);
      if p > N then break fi;
      for k from 1 to floor(log[p](N)) do
        R:= series(R*(1-x^(p^k)),x,N+1)
      od;
    od:
    seq(coeff(R,x,j),j=0..N); # Robert Israel, Nov 03 2019
  • Mathematica
    nmax = 90; CoefficientList[Series[Product[(1 - Boole[PrimePowerQ[k]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[Boole[PrimePowerQ[d]] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 90}]

Formula

G.f.: Product_{k>=1} (1 - x^A246655(k)).

A383309 Numbers whose prime indices are prime powers > 1 with a common sum of prime indices.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 17, 19, 23, 25, 27, 31, 35, 41, 49, 53, 59, 67, 81, 83, 97, 103, 109, 121, 125, 127, 131, 157, 175, 179, 191, 209, 211, 227, 241, 243, 245, 277, 283, 289, 311, 331, 343, 353, 361, 367, 391, 401, 419, 431, 461, 509, 529, 547, 563, 587, 599
Offset: 1

Views

Author

Gus Wiseman, Apr 25 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. We define the multiset of multisets with MM-number n to be formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The systems with these MM-numbers begin:
   1: {}
   3: {{1}}
   5: {{2}}
   7: {{1,1}}
   9: {{1},{1}}
  11: {{3}}
  17: {{4}}
  19: {{1,1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  31: {{5}}
  35: {{2},{1,1}}
  41: {{6}}
  49: {{1,1},{1,1}}
  53: {{1,1,1,1}}
  59: {{7}}
  67: {{8}}
  81: {{1},{1},{1},{1}}
  83: {{9}}
  97: {{3,3}}
		

Crossrefs

Twice-partitions of this type are counted by A279789.
For just a common sum we have A326534.
For just constant blocks we have A355743.
Numbers without a factorization of this type are listed by A381871, counted by A381993.
The multiplicative version is A381995.
This is the odd case of A382215.
For strict instead of constant blocks we have A382304.
A001055 counts factorizations, strict A045778.
A023894 counts partitions into prime-powers.
A034699 gives maximal prime-power divisor.
A050361 counts factorizations into distinct prime powers.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A317141 counts coarsenings of prime indices, refinements A300383.
A353864 counts rucksack partitions, ranked by A353866.
A355742 chooses a prime-power divisor of each prime index.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Total/@prix/@prix[#]&&And@@PrimePowerQ/@prix[#]&]

Formula

Equals A326534 /\ A355743.

A079412 Number of ways to write n as sum of prime powers p^e such that e>0 and p does not divide n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 3, 1, 3, 1, 11, 1, 18, 3, 7, 5, 43, 2, 65, 5, 24, 10, 137, 4, 115, 17, 84, 16, 379, 3, 519, 42, 152, 47, 317, 12, 1267, 73, 334, 41, 2213, 9, 2897, 107, 344, 174, 4871, 32, 3733, 100, 1369, 245, 10218, 51, 4037, 235, 2607, 554, 20586, 23, 25792, 795
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 07 2003

Keywords

Comments

a(p) = A023894(p) - 1 for p prime.

Examples

			13 = 11+2 = 3^2+2^2 = 3^2+2+2 = 2^3+5 = 2^3+3+2 = 7+2^2+2 = 7+3+3 = 7+2+2+2 = 5+5+3 = 5+2^2+2^2 = 5+2^2+2+2 = 5+3+3+2 = 5+2+2+2+2 = 2^2+2^2+3+2 = 2^2+3+3+3 = 2^2+3+2+2+2 = 3+3+3+2+2 = 3+2+2+2+2+2, therefore a(13)=18, (A023894(13)=19, A079413(13)=3);
14 = 11+3 = 3^2+5 = 5+3+3+3, therefore a(14)=3, (A023894(14)=23, A079413(14)=2).
		

Crossrefs

A079413 Number of ways to write n as sum of powers p^e of distinct primes p such that e>0 and p does not divide n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 2, 1, 2, 1, 3, 1, 3, 2, 3, 3, 3, 2, 5, 3, 4, 3, 9, 3, 5, 4, 6, 4, 18, 3, 20, 8, 7, 8, 10, 6, 30, 9, 11, 8, 41, 5, 47, 11, 12, 13, 63, 10, 42, 13, 23, 16, 89, 13, 35, 20, 34, 28, 126, 11, 134, 35, 36, 44, 57, 15, 185, 40, 64, 19, 236, 31, 251, 64, 55, 54, 117, 24, 341
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 07 2003

Keywords

Comments

a(p) = A051613(p) - 1 for p prime.

Examples

			13 = 11+2 = 3^3+2^2 = 2^3+5, therefore a(13)=3, (A051613(13)=4, A054685(13)=6, A079412(13)=18);
14 = 11+3 = 3^2+5, therefore a(14)=2, (A051613(14)=4, A054685(14)=7, A079412(14)=3).
		

Crossrefs

A281616 Expansion of Sum_{p prime, i>=1} x^(p^i)/(1 - x^(p^i)) / Product_{p prime, j>=1} (1 - x^(p^j)).

Original entry on oeis.org

0, 1, 1, 3, 3, 7, 8, 15, 18, 28, 36, 53, 66, 91, 117, 156, 195, 254, 318, 407, 503, 630, 777, 965, 1176, 1439, 1750, 2124, 2559, 3078, 3692, 4417, 5257, 6246, 7405, 8753, 10314, 12127, 14233, 16668, 19464, 22687, 26406, 30662, 35539, 41109, 47495, 54767, 63044, 72454, 83167, 95305, 109054, 124607, 142209, 162076, 184464
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 25 2017

Keywords

Comments

Total number of parts in all partitions of n into prime power parts (1 excluded).
Convolution of A001222 and A023894.

Examples

			a(9) = 18 because we have [9], [7, 2], [5, 4], [5, 2, 2], [4, 3, 2], [3, 3, 3], [3, 2, 2, 2] and 1 + 2 + 2 + 3 + 3 + 3 + 4 = 18.
		

Crossrefs

Programs

  • Mathematica
    nmax = 57; Rest[CoefficientList[Series[Sum[Floor[1/PrimeNu[i]] x^i/(1 - x^i), {i, 2, nmax}]/Product[1 - Floor[1/PrimeNu[j]] x^j, {j, 2, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{p prime, i>=1} x^(p^i)/(1 - x^(p^i)) / Product_{p prime, j>=1} (1 - x^(p^j)).

A308558 Triangle read by rows where T(n,k) is the number of integer partitions of n > 0 into powers of k > 0.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 4, 2, 2, 1, 4, 2, 2, 2, 1, 6, 3, 2, 2, 2, 1, 6, 3, 2, 2, 2, 2, 1, 10, 3, 3, 2, 2, 2, 2, 1, 10, 5, 3, 2, 2, 2, 2, 2, 1, 14, 5, 3, 3, 2, 2, 2, 2, 2, 1, 14, 5, 3, 3, 2, 2, 2, 2, 2, 2, 1, 20, 7, 4, 3, 3, 2, 2, 2, 2, 2, 2, 1, 20, 7, 4, 3, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 07 2019

Keywords

Examples

			Triangle begins:
  1
  1  2
  1  2  2
  1  4  2  2
  1  4  2  2  2
  1  6  3  2  2  2
  1  6  3  2  2  2  2
  1 10  3  3  2  2  2  2
  1 10  5  3  2  2  2  2  2
  1 14  5  3  3  2  2  2  2  2
  1 14  5  3  3  2  2  2  2  2  2
  1 20  7  4  3  3  2  2  2  2  2  2
  1 20  7  4  3  3  2  2  2  2  2  2  2
Row n = 6 counts the following partitions:
  (111111)  (42)      (33)      (411)     (51)      (6)
            (222)     (3111)    (111111)  (111111)  (111111)
            (411)     (111111)
            (2211)
            (21111)
            (111111)
		

Crossrefs

Same as A102430 except for the k = 1 column.
Row sums are A102431(n) + 1.
Column k = 2 is A018819.
Column k = 3 is A062051.

Programs

  • Mathematica
    Table[If[k==1,1,Length[Select[IntegerPartitions[n],And@@(IntegerQ[Log[k,#]]&/@#)&]]],{n,10},{k,n}]

A339242 Number of partitions of n into prime power parts (1 excluded) where every part appears at least 2 times.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 2, 0, 2, 1, 3, 0, 5, 1, 6, 3, 9, 2, 12, 4, 15, 8, 21, 8, 28, 13, 34, 20, 45, 23, 59, 34, 73, 47, 92, 57, 119, 78, 145, 103, 182, 128, 229, 166, 277, 213, 344, 265, 427, 334, 513, 420, 629, 517, 771, 641, 923, 794, 1120, 967, 1355, 1182, 1618, 1447, 1946, 1745
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2020

Keywords

Examples

			a(12) = 5 because we have [4, 4, 4], [4, 4, 2, 2], [3, 3, 3, 3], [3, 3, 2, 2, 2] and [2, 2, 2, 2, 2, 2].
		

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Product[1 + Boole[PrimePowerQ[k]] x^(2 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{p prime, k>=1} (1 + x^(2*p^k) / (1 - x^(p^k))).

A352165 Number of partitions of n into odd prime powers (1 included).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 26, 31, 37, 44, 52, 61, 71, 83, 97, 112, 130, 150, 173, 199, 228, 261, 298, 340, 386, 439, 497, 563, 637, 718, 809, 910, 1023, 1147, 1286, 1439, 1608, 1796, 2003, 2231, 2483, 2761, 3065, 3401, 3770, 4175, 4619
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[Product[1/(1 - Boole[(PrimePowerQ[k] || k == 1) && OddQ[k]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} 1 / (1 - x^A061345(k)).
Previous Showing 41-50 of 56 results. Next