cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A342196 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k)^2 * a(k-1).

Original entry on oeis.org

1, 1, 5, 23, 155, 1355, 14371, 183911, 2781283, 48726355, 976903875, 22183097191, 565060532965, 16016170519017, 501714014484813, 17265124180702953, 649178961366102597, 26544344366333824055, 1175291769917975444817, 56133021061270139242637, 2881893164859601701738005
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^2 a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 20}]

A343254 Triangle read by rows: T(n,k) is the number of 2-balanced partitions of a set of n elements in which the first and the second subsets have cardinality k, for n >= 0, k = 0..floor(n/2).

Original entry on oeis.org

1, 1, 2, 1, 5, 2, 15, 5, 3, 52, 15, 8, 203, 52, 25, 16, 877, 203, 89, 53, 4140, 877, 354, 197, 131, 21147, 4140, 1551, 810, 512, 115975, 21147, 7403, 3643, 2193, 1496, 678570, 115975, 38154, 17759, 10201, 6697, 4213597, 678570, 210803, 93130, 51146, 32345, 22482
Offset: 0

Views

Author

Francesca Aicardi, Jun 04 2021

Keywords

Comments

A 2-balanced partition is a partition of a set which is the union of three subsets, with the property that the cardinality of the first two subsets are equal (possibly zero), and each block contains the same number (possibly zero) of elements from the first and from the second subset. The rows add to A344775.
T(n,0) are the Bell numbers. T(2k,k) are the numbers of 2-balanced partitions in the particular case in which the third set is empty. T(2k,k) are the generalized Bell numbers given in A023998.

Examples

			T(4,1) = 5, number of 2-balanced partitions of a set A of 4 elements with 1 element in the first subset and 1 element in the second subset: A={a} U {b} U {c,d}. The five partitions are: ((a,b),(c),(d)), ((a,b),(c,d)), ((a,b,c),(d)), ((a,b,d),(c)), ((a,b,c,d)). Note that if a block contains a, then it must contain b. Thus, T(n,1) = T(n-1,0).
Triangle T(n,k) begins:
        1;
        1;
        2,      1;
        5,      2;
       15,      5,      3;
       52,     15,      8;
      203,     52,     25,    16;
      877,    203,     89,    53;
     4140,    877,    354,   197,   131;
    21147,   4140,   1551,   810,   512;
   115975,  21147,   7403,  3643,  2193,  1496;
   678570, 115975,  38154, 17759, 10201,  6697;
  4213597, 678570, 210803, 93130, 51146, 32345, 22482;
  ...
		

Crossrefs

Cf. A000110 (Bell numbers), A023998, A061691 (generalized Stirling numbers), A344775 (row sums).

Formula

T(n,k) = Sum_{j=1..n-k} C(n,k,j). C(n,k,j) is defined for n>=2k, j<=n-k, and obtained by the recursion: C(n,k,j) = C(n-1,k,j-1) + j*C(n-1,k,j), with initial conditions C(2k,k,j) = triangle A061691(k,j) of generalized Stirling numbers.

A346220 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp( (BesselI(0,2*sqrt(x)) - BesselJ(0,2*sqrt(x))) / 2 ).

Original entry on oeis.org

1, 1, 2, 7, 40, 321, 3356, 45123, 752256, 15018433, 355378732, 9823042923, 311510611072, 11242338245009, 458052976883672, 20851748359005567, 1054108827258438656, 58860837547461314049, 3606677286494115444812, 241397002229305033296603, 17579096976247770110062080
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[(BesselI[0, 2 Sqrt[x]] - BesselJ[0, 2 Sqrt[x]])/2], {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, 2 k + 1]^2 (2 k + 1) a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 20}]

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = exp( Sum_{n>=0} x^(2*n+1) / ((2*n + 1)!)^2 ).
a(0) = 1; a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1)^2 * (2*k+1) * a(n-2*k-1).

A336635 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(BesselI(0,2*sqrt(x))^2 - 1).

Original entry on oeis.org

1, 2, 14, 176, 3470, 96792, 3590048, 169686792, 9903471502, 696692504552, 57958925154584, 5614276497440712, 625153195794408608, 79159558899671117896, 11293672011942106846808, 1801015209162807119535216, 318805481931592799427378062
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 28 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 16; CoefficientList[Series[Exp[BesselI[0, 2 Sqrt[x]]^2 - 1], {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 Binomial[2 k, k] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]

Formula

a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * binomial(2*k,k) * k * a(n-k).

A336636 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(BesselI(0,2*sqrt(x))^3 - 1).

Original entry on oeis.org

1, 3, 33, 660, 20817, 935388, 56149098, 4311694467, 410200118577, 47174279349540, 6431874002292978, 1023398757621960327, 187566773426941146498, 39164789611542644630415, 9229712819952662426436507, 2435069724188535096598261305
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 28 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; CoefficientList[Series[Exp[BesselI[0, 2 Sqrt[x]]^3 - 1], {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 HypergeometricPFQ[{1/2, -k, -k}, {1, 1}, 4] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]

Formula

a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * A002893(k) * k * a(n-k).

A336637 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(BesselI(0,2*sqrt(x))^4 - 1).

Original entry on oeis.org

1, 4, 60, 1648, 71612, 4448384, 370135632, 39480942848, 5227020747708, 837878205997216, 159457868003008640, 35459969754432262208, 9093585253916177728592, 2659611377508767798535488, 878768601771275773332660736, 325350340926291926090183214848
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 28 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; CoefficientList[Series[Exp[BesselI[0, 2 Sqrt[x]]^4 - 1], {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 Binomial[2 k, k] HypergeometricPFQ[{1/2, -k, -k, -k}, {1, 1, 1/2 - k}, 1] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]

Formula

a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * A002895(k) * k * a(n-k).

A061697 Generalized Bell numbers.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 201, 1226, 5587, 493333, 8910253, 109739620, 6832444928, 251336859489, 6402632091649, 369288128260091, 21333939590516867, 941843896620169405, 60266201588496408645, 4623833509894543300868, 309412778502377193367456, 24102475277979402591991181
Offset: 0

Views

Author

N. J. A. Sloane, Jun 19 2001

Keywords

Crossrefs

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(BesselI(0,2*sqrt(x)) - 1 - x - x^2/4). - Ilya Gutkovskiy, Jul 12 2020

Extensions

More terms from Ilya Gutkovskiy, Jul 12 2020

A337826 a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * k^4 * a(n-k).

Original entry on oeis.org

1, 1, 10, 105, 2248, 62445, 2390436, 116650177, 7043659904, 514744959321, 44534754680500, 4493090921151261, 521600149636044480, 68900819660071184149, 10259571068808850618480, 1708054303772376318547125, 315688007001129064574027776, 64370788231256983836207599153
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 24 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 k^4 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
    nmax = 17; CoefficientList[Series[Exp[x (BesselI[0, 2 Sqrt[x]] + Sqrt[x] BesselI[1, 2 Sqrt[x]])], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x * (BesselI(0,2*sqrt(x)) + sqrt(x) * BesselI(1,2*sqrt(x)))).
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(Sum_{n>=1} n^3 * x^n / (n!)^2).

A346271 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp( BesselI(0,2*sqrt(x)) - 1 - x^2 / 4 ).

Original entry on oeis.org

1, 1, 2, 7, 41, 346, 3807, 53747, 952275, 20362552, 515112983, 15277888693, 523304644304, 20415373547609, 900219731675981, 44533809102813206, 2451041479421900803, 149140880201760643360, 9982798939295116151967, 731215136812226462200109, 58333374310397488522052976
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[BesselI[0, 2 Sqrt[x]] - 1 - x^2/4], {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = n a[n - 1] + (1/n) Sum[Binomial[n, k]^2 k a[n - k], {k, 3, n}]; Table[a[n], {n, 0, 20}]

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = exp( x + Sum_{n>=3} x^n / (n!)^2 ).
a(0) = 1; a(n) = n * a(n-1) + (1/n) * Sum_{k=3..n} binomial(n,k)^2 * k * a(n-k).

A346272 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp( BesselI(0,2*sqrt(x)) - 1 - x^3 / 36 ).

Original entry on oeis.org

1, 1, 3, 15, 115, 1196, 16282, 276158, 5713507, 140482000, 4047179258, 134447125418, 5097852537802, 218254682152053, 10469861372693621, 558373926672949031, 32908746221003292003, 2130712239317226923136, 150826951188229240683858, 11618459541824256750732794
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[Exp[BesselI[0, 2 Sqrt[x]] - 1 - x^3/36], {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = a[1] = 1; a[n_] := a[n] = n a[n - 1] + n (n - 1)^2 a[n - 2]/2 + (1/n) Sum[Binomial[n, k]^2 k a[n - k], {k, 4, n}]; Table[a[n], {n, 0, 19}]

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = exp( x + x^2 / 4 + Sum_{n>=4} x^n / (n!)^2 ).
a(0) = a(1) = 1; a(n) = n * a(n-1) + n * (n-1)^2 * a(n-2) / 2 + (1/n) * Sum_{k=4..n} binomial(n,k)^2 * k * a(n-k).
Previous Showing 11-20 of 28 results. Next