A342196
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k)^2 * a(k-1).
Original entry on oeis.org
1, 1, 5, 23, 155, 1355, 14371, 183911, 2781283, 48726355, 976903875, 22183097191, 565060532965, 16016170519017, 501714014484813, 17265124180702953, 649178961366102597, 26544344366333824055, 1175291769917975444817, 56133021061270139242637, 2881893164859601701738005
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^2 a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 20}]
A343254
Triangle read by rows: T(n,k) is the number of 2-balanced partitions of a set of n elements in which the first and the second subsets have cardinality k, for n >= 0, k = 0..floor(n/2).
Original entry on oeis.org
1, 1, 2, 1, 5, 2, 15, 5, 3, 52, 15, 8, 203, 52, 25, 16, 877, 203, 89, 53, 4140, 877, 354, 197, 131, 21147, 4140, 1551, 810, 512, 115975, 21147, 7403, 3643, 2193, 1496, 678570, 115975, 38154, 17759, 10201, 6697, 4213597, 678570, 210803, 93130, 51146, 32345, 22482
Offset: 0
T(4,1) = 5, number of 2-balanced partitions of a set A of 4 elements with 1 element in the first subset and 1 element in the second subset: A={a} U {b} U {c,d}. The five partitions are: ((a,b),(c),(d)), ((a,b),(c,d)), ((a,b,c),(d)), ((a,b,d),(c)), ((a,b,c,d)). Note that if a block contains a, then it must contain b. Thus, T(n,1) = T(n-1,0).
Triangle T(n,k) begins:
1;
1;
2, 1;
5, 2;
15, 5, 3;
52, 15, 8;
203, 52, 25, 16;
877, 203, 89, 53;
4140, 877, 354, 197, 131;
21147, 4140, 1551, 810, 512;
115975, 21147, 7403, 3643, 2193, 1496;
678570, 115975, 38154, 17759, 10201, 6697;
4213597, 678570, 210803, 93130, 51146, 32345, 22482;
...
- Alois P. Heinz, Rows n = 0..200, flattened
- Francesca Aicardi, Balanced partitions, preprint on researchgate, 2021.
- Francesca Aicardi, Diego Arcis, and Jesús Juyumaya, Brauer and Jones tied monoids, arXiv:2107.04170 [math.RT], 2021.
A346220
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp( (BesselI(0,2*sqrt(x)) - BesselJ(0,2*sqrt(x))) / 2 ).
Original entry on oeis.org
1, 1, 2, 7, 40, 321, 3356, 45123, 752256, 15018433, 355378732, 9823042923, 311510611072, 11242338245009, 458052976883672, 20851748359005567, 1054108827258438656, 58860837547461314049, 3606677286494115444812, 241397002229305033296603, 17579096976247770110062080
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[(BesselI[0, 2 Sqrt[x]] - BesselJ[0, 2 Sqrt[x]])/2], {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, 2 k + 1]^2 (2 k + 1) a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 20}]
A336635
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(BesselI(0,2*sqrt(x))^2 - 1).
Original entry on oeis.org
1, 2, 14, 176, 3470, 96792, 3590048, 169686792, 9903471502, 696692504552, 57958925154584, 5614276497440712, 625153195794408608, 79159558899671117896, 11293672011942106846808, 1801015209162807119535216, 318805481931592799427378062
Offset: 0
-
nmax = 16; CoefficientList[Series[Exp[BesselI[0, 2 Sqrt[x]]^2 - 1], {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 Binomial[2 k, k] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]
A336636
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(BesselI(0,2*sqrt(x))^3 - 1).
Original entry on oeis.org
1, 3, 33, 660, 20817, 935388, 56149098, 4311694467, 410200118577, 47174279349540, 6431874002292978, 1023398757621960327, 187566773426941146498, 39164789611542644630415, 9229712819952662426436507, 2435069724188535096598261305
Offset: 0
-
nmax = 15; CoefficientList[Series[Exp[BesselI[0, 2 Sqrt[x]]^3 - 1], {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 HypergeometricPFQ[{1/2, -k, -k}, {1, 1}, 4] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
A336637
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(BesselI(0,2*sqrt(x))^4 - 1).
Original entry on oeis.org
1, 4, 60, 1648, 71612, 4448384, 370135632, 39480942848, 5227020747708, 837878205997216, 159457868003008640, 35459969754432262208, 9093585253916177728592, 2659611377508767798535488, 878768601771275773332660736, 325350340926291926090183214848
Offset: 0
-
nmax = 15; CoefficientList[Series[Exp[BesselI[0, 2 Sqrt[x]]^4 - 1], {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 Binomial[2 k, k] HypergeometricPFQ[{1/2, -k, -k, -k}, {1, 1, 1/2 - k}, 1] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
A061697
Generalized Bell numbers.
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 201, 1226, 5587, 493333, 8910253, 109739620, 6832444928, 251336859489, 6402632091649, 369288128260091, 21333939590516867, 941843896620169405, 60266201588496408645, 4623833509894543300868, 309412778502377193367456, 24102475277979402591991181
Offset: 0
A337826
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * k^4 * a(n-k).
Original entry on oeis.org
1, 1, 10, 105, 2248, 62445, 2390436, 116650177, 7043659904, 514744959321, 44534754680500, 4493090921151261, 521600149636044480, 68900819660071184149, 10259571068808850618480, 1708054303772376318547125, 315688007001129064574027776, 64370788231256983836207599153
Offset: 0
-
a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 k^4 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 17}]
nmax = 17; CoefficientList[Series[Exp[x (BesselI[0, 2 Sqrt[x]] + Sqrt[x] BesselI[1, 2 Sqrt[x]])], {x, 0, nmax}], x] Range[0, nmax]!^2
A346271
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp( BesselI(0,2*sqrt(x)) - 1 - x^2 / 4 ).
Original entry on oeis.org
1, 1, 2, 7, 41, 346, 3807, 53747, 952275, 20362552, 515112983, 15277888693, 523304644304, 20415373547609, 900219731675981, 44533809102813206, 2451041479421900803, 149140880201760643360, 9982798939295116151967, 731215136812226462200109, 58333374310397488522052976
Offset: 0
-
nmax = 20; CoefficientList[Series[Exp[BesselI[0, 2 Sqrt[x]] - 1 - x^2/4], {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 1; a[n_] := a[n] = n a[n - 1] + (1/n) Sum[Binomial[n, k]^2 k a[n - k], {k, 3, n}]; Table[a[n], {n, 0, 20}]
A346272
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp( BesselI(0,2*sqrt(x)) - 1 - x^3 / 36 ).
Original entry on oeis.org
1, 1, 3, 15, 115, 1196, 16282, 276158, 5713507, 140482000, 4047179258, 134447125418, 5097852537802, 218254682152053, 10469861372693621, 558373926672949031, 32908746221003292003, 2130712239317226923136, 150826951188229240683858, 11618459541824256750732794
Offset: 0
-
nmax = 19; CoefficientList[Series[Exp[BesselI[0, 2 Sqrt[x]] - 1 - x^3/36], {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = a[1] = 1; a[n_] := a[n] = n a[n - 1] + n (n - 1)^2 a[n - 2]/2 + (1/n) Sum[Binomial[n, k]^2 k a[n - k], {k, 4, n}]; Table[a[n], {n, 0, 19}]
Comments