A361781
A(n,k) is the n-th term of the k-th inverse binomial transform of the Bell numbers (A000110); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, -1, 1, 5, 1, -2, 2, 1, 15, 1, -3, 5, -3, 4, 52, 1, -4, 10, -13, 7, 11, 203, 1, -5, 17, -35, 36, -10, 41, 877, 1, -6, 26, -75, 127, -101, 31, 162, 4140, 1, -7, 37, -139, 340, -472, 293, -21, 715, 21147, 1, -8, 50, -233, 759, -1573, 1787, -848, 204, 3425, 115975
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, -6, ...
2, 1, 2, 5, 10, 17, 26, 37, ...
5, 1, -3, -13, -35, -75, -139, -233, ...
15, 4, 7, 36, 127, 340, 759, 1492, ...
52, 11, -10, -101, -472, -1573, -4214, -9685, ...
203, 41, 31, 293, 1787, 7393, 23711, 63581, ...
877, 162, -21, -848, -6855, -35178, -134873, -421356, ...
-
T:= func< n,k | (&+[(-k)^j*Binomial(n,j)*Bell(n-j): j in [0..n]]) >;
A361781:= func< n,k | T(k, n-k) >;
[A361781(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 12 2024
-
A:= proc(n, k) option remember; uses combinat;
add(binomial(n, j)*(-k)^j*bell(n-j), j=0..n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
# second Maple program:
b:= proc(n, m) option remember;
`if`(n=0, 1, b(n-1, m+1)+m*b(n-1, m))
end:
A:= (n, k)-> b(n, -k):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
T[n_, k_]:= T[n, k]= If[k==0, BellB[n], Sum[(-k)^j*Binomial[n,j]*BellB[n-j], {j,0,n}]];
A361781[n_, k_]= T[k, n-k];
Table[A361781[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 12 2024 *)
-
def T(n,k): return sum( (-k)^j*binomial(n,j)*bell_number(n-j) for j in range(n+1))
def A361781(n, k): return T(k, n-k)
flatten([[A361781(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 12 2024
A358622
Regular triangle read by rows. T(n, k) = [[n, k]], where [[n, k]] are the second order Stirling cycle numbers (or second order reciprocal Stirling numbers). T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 6, 3, 0, 0, 0, 24, 20, 0, 0, 0, 0, 120, 130, 15, 0, 0, 0, 0, 720, 924, 210, 0, 0, 0, 0, 0, 5040, 7308, 2380, 105, 0, 0, 0, 0, 0, 40320, 64224, 26432, 2520, 0, 0, 0, 0, 0, 0, 362880, 623376, 303660, 44100, 945, 0, 0, 0, 0, 0
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 0;
[2] 0, 1, 0;
[3] 0, 2, 0, 0;
[4] 0, 6, 3, 0, 0;
[5] 0, 24, 20, 0, 0, 0;
[6] 0, 120, 130, 15, 0, 0, 0;
[7] 0, 720, 924, 210, 0, 0, 0, 0;
[8] 0, 5040, 7308, 2380, 105, 0, 0, 0, 0;
[9] 0, 40320, 64224, 26432, 2520, 0, 0, 0, 0, 0;
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 2nd ed. 1994, thirty-fourth printing 2022.
A008306 is an irregular subtriangle with more information.
-
P := (n, x) -> (-x)^n*hypergeom([-n, x], [], 1/x):
row := n -> seq(coeff(simplify(P(n, x)), x, k), k = 0..n):
for n from 0 to 9 do row(n) od;
# Alternative:
T := (n, k) -> add(binomial(n, k - j)*abs(Stirling1(n - k + j, j))*(-1)^(k - j), j = 0..k): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
# Using the e.g.f.:
egf := (exp(t)*(1 - t))^(-z): ser := series(egf, t, 12):
seq(print(seq(n!*coeff(coeff(ser, t, n), z, k), k=0..n)), n = 0..9);
# Using second order Eulerian numbers:
A358622 := proc(n, k) local j;
add(binomial(j, n - 2*k)*combinat:-eulerian2(n - k, j), j = 0..n-k) end:
seq(seq(A358622(n, k), k = 0..n), n = 0..12);
# Using generalized Laguerre polynomials:
P := (n, x) -> (-1)^n*n!*LaguerreL(n, -n - x, -x):
row := n -> seq(coeff(simplify(P(n, x)), x, k), k = 0..n):
seq(print(row(n)), n = 0..9);
-
# recursion over rows
from functools import cache
@cache
def StirlingCycleOrd2(n: int) -> list[int]:
if n == 0: return [1]
if n == 1: return [0, 0]
rov: list[int] = StirlingCycleOrd2(n - 2)
row: list[int] = StirlingCycleOrd2(n - 1) + [0]
for k in range(1, n // 2 + 1):
row[k] = (n - 1) * (rov[k - 1] + row[k])
return row
for n in range(9): print(StirlingCycleOrd2(n))
# Alternative, using function BellMatrix from A264428.
from math import factorial
def f(k: int) -> int:
return factorial(k) if k > 0 else 0
print(BellMatrix(f, 9))
A221131
Table, T, read by antidiagonals where T(-j,k) = ((1+sqrt(j))^k + (1-sqrt(j))^k)/2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -2, 1, 1, 1, -2, -5, -4, 1, 1, 1, -3, -8, -7, -4, 1, 1, 1, -4, -11, -8, 1, 0, 1, 1, 1, -5, -14, -7, 16, 23, 8, 1, 1, 1, -6, -17, -4, 41, 64, 43, 16, 1, 1, 1, -7, -20, 1, 76, 117, 64, 17, 16, 1, 1, 1, -8, -23, 8, 121, 176, 29, -128, -95, 0, 1
Offset: 0
-
T[j_, k_] := Expand[((1 + Sqrt[j])^k + (1 - Sqrt[j])^k)/2]; Table[ T[ -j + k, k], {j, 0, 11}, {k, 0, j}] // Flatten
A373164
Triangle read by rows: the exponential almost-Riordan array ( 1 | 2 - exp(x), x ).
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, -1, -2, 1, 0, -1, -3, -3, 1, 0, -1, -4, -6, -4, 1, 0, -1, -5, -10, -10, -5, 1, 0, -1, -6, -15, -20, -15, -6, 1, 0, -1, -7, -21, -35, -35, -21, -7, 1, 0, -1, -8, -28, -56, -70, -56, -28, -8, 1, 0, -1, -9, -36, -84, -126, -126, -84, -36, -9, 1
Offset: 0
The triangle begins:
1;
0, 1;
0, -1, 1;
0, -1, -2, 1;
0, -1, -3, -3, 1;
0, -1, -4, -6, -4, 1;
0, -1, -5, -10, -10, -5, 1;
0, -1, -6, -15, -20, -15, -6, 1;
0, -1, -7, -21, -35, -35, -21, -7, 1;
...
-
T[n_,0]:=KroneckerDelta[n,0]; T[n_,k_]:=(n-1)!/(k-1)!SeriesCoefficient[(2-Exp[x])x^(k-1),{x,0,n-1}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten
Comments