cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A198768 a(n) = 9*5^n-1.

Original entry on oeis.org

8, 44, 224, 1124, 5624, 28124, 140624, 703124, 3515624, 17578124, 87890624, 439453124, 2197265624, 10986328124, 54931640624, 274658203124, 1373291015624, 6866455078124, 34332275390624, 171661376953124, 858306884765624
Offset: 0

Views

Author

Vincenzo Librandi, Oct 30 2011

Keywords

Crossrefs

Programs

  • Magma
    [9*5^n-1: n in [0..30]];
  • Mathematica
    9 5^Range[0, 20] - 1 (* or *) LinearRecurrence[{6, -5}, {8, 44}, 20] (* Harvey P. Dale, Nov 01 2011 *)
    CoefficientList[Series[(8 - 4 x)/(1 - 6 x + 5 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 03 2013 *)

Formula

a(n) = 5*a(n-1)+4.
a(n) = 6*a(n-1)-5*a(n-2), n > 1.
G.f.: (8 - 4*x)/(1 - 6*x + 5*x^2). - Vincenzo Librandi, Jan 03 2013

A198769 a(n) = (9*5^n-1)/4.

Original entry on oeis.org

2, 11, 56, 281, 1406, 7031, 35156, 175781, 878906, 4394531, 21972656, 109863281, 549316406, 2746582031, 13732910156, 68664550781, 343322753906, 1716613769531, 8583068847656, 42915344238281, 214576721191406, 1072883605957031, 5364418029785156, 26822090148925781
Offset: 0

Views

Author

Vincenzo Librandi, Oct 30 2011

Keywords

Crossrefs

Programs

  • Magma
    [(9*5^n-1)/4: n in [0..30]];
  • Mathematica
    (9*5^Range[0,30]-1)/4 (* or *) LinearRecurrence[{6,-5},{2,11},30] (* Harvey P. Dale, May 07 2012 *)

Formula

a(n) = 5*a(n-1)+1.
a(n) = 6*a(n-1)-5*a(n-2), n>1.
G.f.: (2-x)/(5*x^2-6*x+1). - Harvey P. Dale, May 07 2012

A198770 11*5^n-1.

Original entry on oeis.org

10, 54, 274, 1374, 6874, 34374, 171874, 859374, 4296874, 21484374, 107421874, 537109374, 2685546874, 13427734374, 67138671874, 335693359374, 1678466796874, 8392333984374, 41961669921874, 209808349609374, 1049041748046874
Offset: 0

Views

Author

Vincenzo Librandi, Oct 30 2011

Keywords

Crossrefs

Programs

  • Magma
    [11*5^n-1: n in [0..30]];
  • Mathematica
    CoefficientList[Series[2*(5 - 3*x)/(1 - 6*x + 5*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 04 2013 *)
    11*5^Range[0,20]-1 (* or *) LinearRecurrence[{6,-5},{10,54},30] (* Harvey P. Dale, May 14 2019 *)

Formula

a(n) = 5*a(n-1)+4.
a(n)= = 6*a(n-1)-5*a(n-2), n>1.
G.f.: 2*(5 - 3*x)/(1 - 6*x + 5*x^2). - Vincenzo Librandi, Jan 04 2013

A225586 Floor((5^n-1)/n).

Original entry on oeis.org

4, 12, 41, 156, 624, 2604, 11160, 48828, 217013, 976562, 4438920, 20345052, 93900240, 435965401, 2034505208, 9536743164, 44878791360, 211927625868, 1003867701480, 4768371582031, 22706531343005, 108372081409801, 518301258916440, 2483526865641276
Offset: 1

Views

Author

Vincenzo Librandi, May 30 2013

Keywords

Crossrefs

Programs

  • Magma
    [Floor((5^n-1)/n): n in [1..30]];
  • Mathematica
    Table[Floor[(5^n - 1) / n], {n, 30}] (* or *) Table[Quotient[5^n - 1, n], {n, 30}]

A349748 Primes p for which 2^p-1 and 5^p-1 are not relatively prime.

Original entry on oeis.org

2, 179, 239, 359, 419, 431, 499, 547, 571, 641, 659, 719, 761, 937, 1013, 1019, 1223, 1439, 1499, 1559, 1789, 2039, 2339, 2399, 2459, 2539, 2593, 2677, 2699, 2819, 2939, 3299, 3359, 3539, 3779, 4013, 4019, 4273, 4513, 4787, 4919, 5039, 5279, 5393, 5399, 5639, 6173, 6199, 6899, 7079, 8599, 8741, 8929, 9059, 9419, 9479
Offset: 1

Views

Author

Antti Karttunen, Nov 30 2021

Keywords

Comments

Primes p for which A270390(p) = gcd(A000225(p), A024049(p)) > 1.

Examples

			2 is included as 2^2 - 1 = 3 and 5^2 - 1 = 24 share a prime factor 3.
		

Crossrefs

Programs

  • Mathematica
    upto=10^4;Select[Prime[Range[PrimePi[upto]]],GCD[2^#-1,5^#-1]>1&] (* Paolo Xausa, Nov 30 2021 *)
  • PARI
    isA349748(n) = (isprime(n)&&(gcd(2^n-1,5^n-1)>1));
    
  • Python
    from math import gcd
    from sympy import isprime
    def ok(n): return isprime(n) and gcd(2**n-1, 5**n-1) > 1
    print([k for k in range(9500) if ok(k)]) # Michael S. Branicky, Nov 30 2021

A265166 Numbers n such that 2^n-1 and 5^n-1 are coprime.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 37, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 97, 101, 103, 107, 109, 111, 113, 115, 121, 123, 125, 127, 129, 131, 133, 137, 139, 141, 143
Offset: 1

Views

Author

Vincenzo Librandi, May 01 2016

Keywords

Comments

Also numbers n such that A270390(n) = 1.
Conjectured to be infinite: see the Ailon and Rudnick paper.

Examples

			gcd(2^1-1, 5^1-1) = gcd(1,4) = 1, so a(1) = 1.
gcd(2^3-1, 5^3-1) = gcd(7,124) = 1, so a(2) = 3.
gcd(2^4-1, 5^4-1) = gcd(15,624) = 3, so 4 is not in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..200] | Gcd(2^n-1,5^n-1) eq 1];
  • Mathematica
    Select[Range[200], GCD[2^# - 1, 5^# - 1] == 1 &]
    Select[Range[150],CoprimeQ[2^#-1,5^#-1]&] (* Harvey P. Dale, Apr 12 2018 *)
Previous Showing 31-36 of 36 results.