cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A227430 Expansion of x^2*(1-x)^3/((1-2*x)*(1-x+x^2)*(1-3*x+3x^2)).

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 21, 29, 45, 90, 220, 561, 1365, 3095, 6555, 13110, 25126, 46971, 87381, 164921, 320001, 640002, 1309528, 2707629, 5592405, 11450531, 23166783, 46333566, 91869970, 181348455, 357913941, 708653429, 1410132405, 2820264810, 5662052980
Offset: 0

Views

Author

Paul Curtz, Jul 11 2013

Keywords

Comments

Consider the binomial transform of 0, 0, 0, 0, 0, 1 (period 6) with its differences:
0, 0, 0, 0, 0, 1, 6, 21, 56, 126,... d(n): after 0, it is A192080.
0, 0, 0, 0, 1, 5, 15, 35, 70, 126,... e(n)
0, 0, 0, 1, 4, 10, 20, 35, 56, 85,... f(n)
0, 0, 1, 3, 6, 10, 15, 21, 29, 45,... a(n)
0, 1, 2, 3, 4, 5, 6, 8, 16, 45,... b(n)
1, 1, 1, 1, 1, 1, 2, 8, 29, 85,... c(n)
0, 0, 0, 0, 0, 1, 6, 21, 56, 126,... d(n).
a(n) + d(n) = A024495(n),
b(n) + e(n) = A131708(n),
c(n) + f(n) = A024493(n).
a(n) - d(n) = 0, 0, 1, 3, 6, 9, 9, 0,... A057083(n-2)
b(n) - e(n) = 0, 1, 2, 3, 3, 0, -9, -27,... A057682(n)
c(n) - f(n) = 1, 1, 1, 0, -3, -9, -18, -27,... A057681(n)
d(n) - a(n) = 0, 0, -1, -3, -6, -9, -9, 0,... -A057083(n-2)
e(n) - b(n) = 0, -1, -2, -3, -3, 0, 9, 27,... -A057682(n)
f(n) - c(n) = -1, -1, -1, 0, 3, 9, 18, 27,... -A057681(n).
The first column is A131531(n).
The first two trisections are multiples of 3. Is the third (1, 10, 29,...) mod 9 A029898(n)?

Examples

			a(6)=6*10-15*6+20*3-15*1+6*0=15, a(7)=90-150+120-45+6=21.
		

Programs

  • Mathematica
    Join[{0},LinearRecurrence[{6,-15,20,-15,6},{0,1,3,6,10},40]] (* Harvey P. Dale, Dec 17 2014 *)
  • PARI
    {a(n) = sum(k=0, n\6, binomial(n, 6*k+2))} \\ Seiichi Manyama, Mar 23 2019

Formula

a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) for n>5, a(0)=a(1)=0, a(2)=1, a(3)=3, a(4)=6, a(5)=10.
a(n) = A024495(n) - A192080(n-5) for n>4.
G.f.: -(x^5 - 3*x^4 + 3*x^3 - x^2)/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)). - Ralf Stephan, Jul 13 2013
a(n) = Sum_{k=0..floor(n/6)} binomial(n,6*k+2). - Seiichi Manyama, Mar 23 2019

Extensions

Definition uses the g.f. of Ralf Stephan.
More terms from Harvey P. Dale, Dec 17 2014

A080850 Number triangle related to a problem of Knuth.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 5, 5, 6, 4, 1, 11, 10, 11, 10, 5, 1, 22, 21, 21, 21, 15, 6, 1, 43, 43, 42, 42, 36, 21, 7, 1, 85, 86, 85, 84, 78, 57, 28, 8, 1, 170, 171, 171, 169, 162, 135, 85, 36, 9, 1, 341, 341, 342, 340, 331, 297, 220, 121, 45, 10, 1, 683, 682, 683, 671, 628, 517
Offset: 1

Views

Author

Paul Barry, Feb 20 2003

Keywords

Comments

In lower-triangular form, the columns are the binomial transforms of the sequences with g.f. x^(k-1)/(1-x^3). The first three columns are A024493, A024494, A024495.

Examples

			Rows are {1}, {1,1}, {1,2,1}, {2,3,3,1}, {5,5,6,4,1}, {11,10,11,10,5,1}...
		

Formula

T(n, 1) = A024493(n). T(n, k)=0, k>n, T(n, n)=1. T(n, k) = T(n-1, k-1)+T(n-1, k).

A232774 Triangle T(n,k), read by rows, given by T(n,0)=1, T(n,1)=2^(n+1)-n-2, T(n,n)=(-1)^(n-1) for n > 0, T(n,k)=T(n-1,k)-T(n-1,k-1) for 1 < k < n.

Original entry on oeis.org

1, 1, 1, 1, 4, -1, 1, 11, -5, 1, 1, 26, -16, 6, -1, 1, 57, -42, 22, -7, 1, 1, 120, -99, 64, -29, 8, -1, 1, 247, -219, 163, -93, 37, -9, 1, 1, 502, -466, 382, -256, 130, -46, 10, -1, 1, 1013, -968, 848, -638, 386, -176, 56, -11, 1, 2036, -1981, 1816, -1486, 1024
Offset: 0

Views

Author

Philippe Deléham, Nov 30 2013

Keywords

Comments

Row sums are A000079(n) = 2^n.
Diagonal sums are A024493(n+1) = A130781(n).
Sum_{k=0..n} T(n,k)*x^k = -A003063(n+2), A159964(n), A000012(n), A000079(n), A001045(n+2), A056450(n), (-1)^(n+1)*A232015(n+1) for x = -2, -1, 0, 1, 2, 3, 4 respectively.

Examples

			Triangle begins:
  1;
  1,    1;
  1,    4,   -1;
  1,   11,   -5,   1;
  1,   26,  -16,   6,   -1;
  1,   57,  -42,  22,   -7,   1;
  1,  120,  -99,  64,  -29,   8,   -1;
  1,  247, -219, 163,  -93,  37,   -9,  1;
  1,  502, -466, 382, -256, 130,  -46, 10,  -1;
  1, 1013, -968, 848, -638, 386, -176, 56, -11, 1;
		

Crossrefs

Formula

G.f.: Sum_{n>=0, k=0..n} T(n,k)*y^k*x^n=(1+2*(y-1)*x)/((1-2*x)*(1+(y-1)*x)).
|T(2*n,n)| = 4^n = A000302(n).
T(n,k) = (-1)^(k-1) * (Sum_{i=0..n-k} (2^(i+1)-1) * binomial(n-i-1,k-1)) for 0 < k <= n and T(n,0) = 1 for n >= 0. - Werner Schulte, Mar 22 2019
Previous Showing 31-33 of 33 results.