cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A349987 Numbers that can be represented in more than one way as p^2+p*q+q^2 with p and q primes, p<=q.

Original entry on oeis.org

147, 903, 1911, 3667, 3913, 4627, 5187, 8103, 10137, 11613, 12999, 13117, 13467, 14313, 16023, 16887, 18723, 19047, 19747, 20397, 22197, 23107, 24307, 25833, 28227, 30457, 30847, 31827, 32403, 37947, 38703, 39819, 45163, 46543, 50407, 57603, 58813, 61383, 63147, 68367, 68403, 70707, 71337, 74973
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 09 2022

Keywords

Examples

			a(3) = 1911 is a term because 1911 = 5^2+5*41+41^2 = 19^2+19*31+31^2 where 5, 41, 19 and 31 are primes.
		

Crossrefs

Subsequence of A024614.
Cf. A349986.

Programs

  • Maple
    N:= 10^6: # for terms <= N
    P:= select(isprime, [2,seq(i,i=3..floor(sqrt(N)),2)]):
    nP:= nops(P):
    S:= {}: T:= {}:
    for i from 1 to nP do
      for j from 1 to i do
        x:= P[i]^2 + P[i]*P[j]+P[j]^2;
        if x > N then break fi;
        if member(x,S) then T:= T union {x} fi;
        S:= S union {x};
    od od:
    sort(convert(T,list));
  • Mathematica
    Do[If[Total@Boole[And@@@PrimeQ[{p,q}/.Solve[p^2+p*q+q^2==k&&p>1&&p<=q,{p,q},Integers]]]>1,Print@k],{k,10^6}] (* Giorgos Kalogeropoulos, Jan 09 2022 *)

A349986 Numbers that can be represented as p^2 + p*q + q^2 where p and q are primes.

Original entry on oeis.org

12, 19, 27, 39, 49, 67, 75, 79, 109, 147, 163, 199, 201, 217, 247, 259, 309, 327, 349, 363, 399, 403, 427, 433, 457, 481, 507, 543, 579, 597, 607, 669, 679, 691, 739, 777, 867, 903, 937, 973, 997, 1011, 1027, 1063, 1083, 1093, 1141, 1209, 1227, 1281, 1327, 1387, 1423, 1447, 1489, 1533, 1579, 1587
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 09 2022

Keywords

Comments

The only square in this sequence is 49.

Examples

			a(3) = 27 is a term because 27 = 3^2+3*3+3^2.
a(4) = 39 is a term because 39 = 2^2+2*5+5^2.
		

Crossrefs

Contains A079705, A244146, A349987.
Subsequence of A024614.

Programs

  • Maple
    N:= 10^4: # for terms <= N
    P:= select(isprime, [2,seq(i,i=3..floor(sqrt(N)),2)]):
    nP:= nops(P):
    S:= {}:
    for i from 1 to nP do
      for j from 1 to i do
        x:= P[i]^2 + P[i]*P[j]+P[j]^2;
        if x > N then break fi;
        S:= S union {x};
    od od:
    sort(convert(S,list));

A300381 Numbers of the form x^3+x*y+y^3 where x,y>0.

Original entry on oeis.org

3, 11, 20, 31, 41, 63, 69, 80, 103, 131, 143, 144, 167, 209, 223, 236, 261, 275, 304, 351, 365, 371, 391, 435, 468, 503, 521, 536, 563, 601, 608, 677, 735, 739, 755, 776, 783, 829, 899, 911, 999, 1011, 1028, 1057, 1088, 1104, 1135, 1175, 1276, 1313, 1343, 1361, 1391, 1413, 1439, 1511
Offset: 1

Views

Author

R. J. Mathar, Mar 04 2018

Keywords

Comments

Contains all terms larger than 1 from A071568 (contributed by y=1).

Crossrefs

Cf. A003136, A266970 (prime subsequence), A024614.

A299505 Numbers of the form x^4 + y*x^3 + y^2*x^2 + y^3*x + y^4, where x and y are positive integers.

Original entry on oeis.org

5, 31, 80, 121, 211, 341, 405, 496, 781, 1031, 1280, 1441, 1555, 1936, 2101, 2511, 2801, 3125, 3355, 3376, 4141, 4651, 4681, 5261, 5456, 6480, 6505, 6841, 7381, 7936, 8431, 9031, 9801, 9881, 11111, 11605, 12005, 12496, 13981, 14251, 15961, 16105, 16496, 17091, 17891
Offset: 1

Views

Author

Peter Luschny, Mar 02 2018

Keywords

Crossrefs

Cf. A024614, A002649 (subsequence of primes).

Programs

  • Julia
    function isA299505(n)
        n % 5 >= 2 && return false
        n == 5 && return true
        K = Int(floor(5.383*log(n)^1.161))
        M = Int(floor(2*sqrt(n/3)))
        for k in 3:K
            for y in 2:M, x in 1:y
                n == x^4+y*x^3+y^2*x^2+y^3*x+y^4 && return true
        end end
        return false
    end
    A299505list(upto) = [n for n in 1:upto if isA299505(n)]
    println(A299505list(18000))

A300303 Squares that are not of the form x^2 + x*y + y^2, where x and y are positive integers.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 64, 81, 100, 121, 144, 225, 256, 289, 324, 400, 484, 529, 576, 625, 729, 841, 900, 1024, 1089, 1156, 1296, 1600, 1681, 1936, 2025, 2116, 2209, 2304, 2500, 2601, 2809, 2916, 3025, 3364, 3481, 3600, 4096, 4356, 4624, 4761, 5041, 5184, 5625, 6400, 6561, 6724, 6889, 7225, 7569
Offset: 1

Views

Author

Altug Alkan, Mar 02 2018

Keywords

Comments

Or Loeschian numbers (A003136) that are not in A024614.
Squares that are not in this sequence are 49, 169, 196, 361, 441, 676, ...
This is the list of squares not of the form A050931(k)^2. A number n is in this sequence iff n = m^2 with m having no prime factor == 1 (mod 6). - M. F. Hasler, Mar 04 2018

Examples

			Loeschian number 25 = 5^2 is a term because 25 = x^2 + x*y + y^2 has no solution for positive integers x, y.
		

Crossrefs

Programs

  • Maple
    isA024614:= proc(n) local x,y;
    for x from 1 to floor(sqrt(n-1)) do
       if issqr(4*n-3*x^2) then return true fi
    od:
    false
    end proc:
    isA024614(0):= false:
    remove(isA024614, [seq(i^2,i=0..200)]); # Robert Israel, Mar 02 2018
  • Mathematica
    sol[s_] := Solve[0 < x <= y && s == x^2 + x y + y^2, {x, y}, Integers];
    Select[Range[0, 100]^2, sol[#] == {}&] (* Jean-François Alcover, Oct 26 2020 *)
  • PARI
    is(n,m)=issquare(n,m)&&!setsearch(Set(factor(m)[,1]%6),1) \\ second part is equivalent to is_A230780(m), this is sufficient to test (e.g., to produce a list) if we know that n = m^2. - M. F. Hasler, Mar 04 2018

Formula

a(n) = A230780(n-1)^2 for n > 1.

A331121 a(n) is the smallest positive integer k for which tau(k) does not divide sigma(n).

Original entry on oeis.org

2, 2, 4, 2, 6, 16, 4, 2, 2, 6, 16, 4, 4, 16, 16, 2, 6, 2, 4, 6, 4, 16, 16, 24, 2, 6, 4, 4, 6, 16, 4, 2, 16, 6, 16, 2, 4, 24, 4, 6, 6, 16, 4, 16, 6, 16, 16, 4, 2, 2, 16, 4, 6, 36, 16, 36, 4, 6, 24, 16, 4, 16, 4, 2, 16, 16
Offset: 1

Views

Author

Lechoslaw Ratajczak, Jan 10 2020

Keywords

Comments

Consecutive t satisfying the equation a(t) = 2 are consecutive elements of A028982 (squares and twice squares).
Conjecture: consecutive u satisfying the equation a(u) = 4 are consecutive elements of a sequence defined as follows: (A024614 \ A088535) \ A074384. The conjecture was checked for 10^6 consecutive integers.

Examples

			a(10) = 6 because sigma(10) = 18 is divisible by (tau(1) = 1), (tau(2) = 2), (tau(3) = 2), (tau(4) = 3), (tau(5) = 2), and is not divisible by (tau(6) = 4).
		

Crossrefs

Programs

  • Mathematica
    Array[Block[{k = 1}, While[Mod[DivisorSigma[1, #], DivisorSigma[0, k]] == 0, k++]; k] &, 66] (* Michael De Vlieger, Jan 31 2020 *)
  • Maxima
    a(n):=(for k:1 while mod(divsum(n), length(divisors(k))) = 0 do z:k, z+1) $ makelist(a(n), n, 1, 100, 1);
    
  • PARI
    a(n) = my(k=1, sn=sigma(n)); while ((sn % numdiv(k)) == 0, k++); k; \\ Michel Marcus, Jan 10 2020
Previous Showing 11-16 of 16 results.