cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A204208 Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements differing by no more than 3.

Original entry on oeis.org

1, 4, 16, 78, 404, 2208, 12492, 72589, 430569, 2596471, 15870357, 98102191, 612222083, 3852015239, 24408653703, 155629858911, 997744376239, 6427757480074, 41590254520410, 270163621543421, 1761179219680657
Offset: 1

Views

Author

R. H. Hardin, Jan 12 2012

Keywords

Comments

Column 3 of A204213
Number of excursions (walks starting at the origin, ending on the x-axis, and never go below the x-axis in between) with n steps from {-3,-2,-1,0,1,2,3}. - David Nguyen, Dec 16 2016

Examples

			Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....1....3....3....2....2....1....2....0....0....2....3....0....3....1....2
..5....3....2....2....2....3....1....5....3....0....2....4....3....2....0....3
..2....6....3....4....0....1....0....6....5....1....0....6....5....2....2....5
..2....3....3....3....2....3....3....3....2....1....0....3....3....0....3....3
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
		

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[(Sum[Binomial[i, j] Binomial[-7j + 4i - 1, 3i - 7j] (-1)^j, {j, 0, (3i)/7}]) a[n - i], {i, 1, n}]/n];
    a /@ Range[1, 21] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
  • Maxima
    a(n):=if n=0 then 1 else sum((sum(binomial(i,j)*binomial(-7*j+4*i-1,3*i-7*j)*(-1)^j,j,0,(3*i)/7))*a(n-i),i,1,n)/n; /* Vladimir Kruchinin, Apr 06 2017 */
  • PARI
    {A025012(n)=polcoeff((1+x+x^2+x^3+x^4+x^5+x^6 +x*O(x^(3*n)))^n,3*n)}
    {a(n)=polcoeff(exp(sum(m=1,n,A025012(m)*x^m/m)+x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Aug 01 2013
    

Formula

G.f.: exp( Sum_{n>=1} A025012(n)*x^n/n ) - 1, where A025012(n) = central coefficient of (1+x+x^2+x^3+x^4+x^5+x^6)^n. - Paul D. Hanna, Aug 01 2013
a(n) = Sum_{i=1..n}((Sum_{j=0..(3*i)/7}(binomial(i,j)*binomial(-7*j+4*i-1,3*i-7*j)*(-1)^j))*a(n-i))/n. - Vladimir Kruchinin, Apr 06 2017

A208592 Number of n-bead necklaces labeled with numbers -3..3 not allowing reversal, with sum zero.

Original entry on oeis.org

1, 4, 13, 60, 291, 1564, 8671, 49852, 292927, 1753964, 10656757, 65549844, 407347747, 2553684852, 16130539053, 102563204892, 655918173287, 4216358457772, 27227967629683, 176554882805940, 1149099219084877, 7504110622072860, 49155856119036993, 322903351882566436
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2012

Keywords

Examples

			All solutions for n=3:
.-2...-1...-3...-3...-1...-2...-3...-2...-3...-2...-2...-1....0
..1....0....2....1....1....0....0....3....3...-1....2...-1....0
..1....1....1....2....0....2....3...-1....0....3....0....2....0
		

Crossrefs

Column 3 of A208597.

Programs

  • Mathematica
    comps[r_, m_, k_] := Sum[(-1)^i*Binomial[r - 1 - i*m, k - 1]*Binomial[k, i], {i, 0, Floor[(r - k)/m]}]; a[n_Integer, k_] := DivisorSum[n, EulerPhi[n/#] comps[#*(k + 1), 2 k + 1, #] &]/n; a[n_] = a[n, 3]; Array[a, 24] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)

Formula

a(n) = (1/n) * Sum_{d | n} totient(n/d) * A025012(d). - Andrew Howroyd, Mar 02 2017

Extensions

a(20)-a(24) from Andrew Howroyd, Mar 02 2017

A125316 Number of base 6 circular n-digit numbers with adjacent digits differing by 3 or less.

Original entry on oeis.org

1, 6, 30, 138, 694, 3526, 18012, 92140, 471566, 2413794, 12356010, 63250314, 323779348, 1657433992, 8484446994, 43432107538, 222330112286, 1138113767838, 5826034724844, 29823627148788, 152667942902854
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+A025012(n+1) for base>=3.int(n/2)+1.

Formula

Conjectures from Colin Barker, Jun 04 2017: (Start)
G.f.: (1 - 3*x^2 - 16*x^3 + 3*x^4 + 8*x^5) / ((1 - x - x^2)*(1 - 5*x - x^2 + 2*x^3)).
a(n) = 6*a(n-1) - 3*a(n-2) - 8*a(n-3) + a(n-4) + 2*a(n-5) for n>5.
(End)

A125342 Number of base 32 circular n-digit numbers with adjacent digits differing by 3 or less.

Original entry on oeis.org

1, 32, 212, 1100, 6700, 41252, 260276, 1663260, 10741356, 69920372, 458065232, 3016606328, 19952674708, 132459700444, 882141536432, 5890902558440, 39433549800556, 264525710537012, 1777811473603544, 11968319215904376
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+A025012(n+1) for base>=3.int(n/2)+1

A125317 Number of base 7 circular n-digit numbers with adjacent digits differing by 3 or less.

Original entry on oeis.org

1, 7, 37, 175, 925, 4977, 27067, 147777, 808165, 4422703, 24210127, 132542813, 725664307, 3973047319, 21752799623, 119098967235, 652080798837, 3570220727531, 19547391880633, 107024353337437, 585971402810715
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+A025012(n+1) for base>=3.int(n/2)+1.

Formula

G.f.: (1 - 6*x^2 - 28*x^3 + 15*x^4 + 28*x^5 - 5*x^6 - 6*x^7) / ((1 - 2*x - x^2 + x^3)*(1 - 5*x - 3*x^2 + 2*x^3 + x^4)) (conjectured). - Colin Barker, Jun 03 2017

A125318 Number of base 8 circular n-digit numbers with adjacent digits differing by 3 or less.

Original entry on oeis.org

1, 8, 44, 212, 1156, 6428, 36338, 206942, 1183164, 6777860, 38866134, 222980282, 1279588414, 7343932838, 42151639560, 241943513252, 1388738207756, 7971319975484, 45755345035400, 262636025020328, 1507534275820126
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+A025012(n+1) for base>=3.int(n/2)+1

Formula

G.f.: (1 - 10*x^2 - 40*x^3 + 45*x^4 + 48*x^5 - 35*x^6 - 12*x^7 + 7*x^8) / ((1 + x)*(1 - 3*x + x^3)*(1 - 6*x + x^2 + 3*x^3 - x^4)) (conjectured). - Colin Barker, Jun 03 2017

A125319 Number of base 9 circular n-digit numbers with adjacent digits differing by 3 or less.

Original entry on oeis.org

1, 9, 51, 249, 1387, 7879, 45663, 267367, 1575395, 9316455, 55211811, 327600447, 1945195699, 11554693471, 68652279747, 407952680479, 2424365629955, 14408066169471, 85629681584835, 508919764066431, 3024669695471107
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+A025012(n+1) for base>=3.int(n/2)+1

Formula

G.f.: (1 - x - 14*x^2 - 36*x^3 + 138*x^4 - 58*x^5 - 52*x^6 + 28*x^7) / ((1 - x)*(1 + x)*(1 - 4*x + 2*x^2)*(1 - 6*x + 2*x^3)) (conjectured). - Colin Barker, Jun 02 2017

A125320 Number of base 10 circular n-digit numbers with adjacent digits differing by 3 or less.

Original entry on oeis.org

1, 10, 58, 286, 1618, 9330, 54994, 328058, 1973026, 11928418, 72360138, 439900746, 2677993234, 16317209282, 99477496666, 606677367546, 3700738695234, 22577766952946, 137756725752298, 840561549454570
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+A025012(n+1) for base>=3.int(n/2)+1

Formula

G.f.: (1 - 21*x^2 - 56*x^3 + 192*x^4 + 112*x^5 - 260*x^6 - 48*x^7 + 84*x^8) / ((1 + x)*(1 - 4*x + 2*x^3)*(1 - 7*x + 4*x^2 + 10*x^3 - 6*x^4)) (conjectured). - Colin Barker, Jun 01 2017

A125321 Number of base 11 circular n-digit numbers with adjacent digits differing by 3 or less.

Original entry on oeis.org

1, 11, 65, 323, 1849, 10781, 64325, 388749, 2371457, 14559461, 89788425, 555446661, 3443457697, 21379001421, 132867762617, 826329001973, 5141530912065, 32001680946301, 199227543918473, 1240485517109477
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+A025012(n+1) for base>=3.int(n/2)+1

Formula

G.f.: (1 - 28*x^2 - 56*x^3 + 318*x^4 + 112*x^5 - 540*x^6 - 48*x^7 + 224*x^8) / ((1 - 4*x - 2*x^2 + 4*x^3)*(1 - 7*x + 2*x^2 + 18*x^3 - 2*x^4 - 8*x^5)) (conjectured). - Colin Barker, Jun 03 2017

A125322 Number of base 12 circular n-digit numbers with adjacent digits differing by 3 or less.

Original entry on oeis.org

1, 12, 72, 360, 2080, 12232, 73656, 449440, 2770016, 17195112, 107304872, 672224048, 4223186080, 26586825472, 167628931360, 1058056409920, 6683674433920, 42244783230496, 267124015799712, 1689602502335776
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+A025012(n+1) for base>=3.int(n/2)+1
Previous Showing 11-20 of 40 results. Next