cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A025324 Numbers that are the sum of 3 nonzero squares in exactly 4 ways.

Original entry on oeis.org

129, 134, 146, 153, 161, 171, 189, 198, 201, 234, 243, 246, 249, 251, 254, 257, 261, 270, 278, 285, 290, 293, 294, 299, 339, 353, 362, 363, 365, 371, 378, 387, 390, 393, 395, 405, 406, 409, 411, 417, 429, 451, 454, 465, 467, 469, 473, 477, 485, 501, 502, 510, 514, 516
Offset: 1

Views

Author

Keywords

Examples

			299 is a term because 299 = 1^2 + 3^2 + 17^2 = 3^2 + 11^2 + 13^2 = 5^2 + 7^2 + 15^2 = 7^2 + 9^2 + 13^2 and there are no more such sums of four nonzero squares giving 182. - _David A. Corneth_, Feb 13 2019
		

Crossrefs

Programs

A025325 Numbers that are the sum of 3 nonzero squares in exactly 5 ways.

Original entry on oeis.org

194, 206, 230, 266, 269, 281, 350, 354, 381, 386, 389, 398, 401, 402, 413, 414, 419, 437, 449, 450, 470, 474, 482, 491, 525, 539, 554, 563, 579, 582, 585, 590, 601, 611, 630, 635, 638, 642, 646, 722, 769, 776, 781, 786, 819, 824, 829, 830, 834, 851, 867, 874, 878, 886
Offset: 1

Views

Author

Keywords

Crossrefs

A025326 Numbers that are the sum of 3 nonzero squares in exactly 6 ways.

Original entry on oeis.org

209, 297, 306, 314, 321, 326, 329, 342, 425, 426, 434, 441, 458, 459, 489, 497, 513, 530, 531, 534, 542, 546, 558, 561, 593, 602, 605, 633, 649, 650, 657, 659, 662, 665, 674, 675, 678, 681, 693, 698, 699, 705, 706, 713, 714, 725, 737, 738, 741, 746, 747, 750, 755, 758
Offset: 1

Views

Author

Keywords

Crossrefs

A025327 Numbers that are the sum of 3 nonzero squares in exactly 7 ways.

Original entry on oeis.org

341, 369, 461, 494, 506, 509, 545, 549, 581, 641, 654, 666, 677, 726, 731, 797, 806, 818, 821, 833, 882, 891, 893, 894, 899, 906, 934, 954, 978, 981, 998, 1011, 1017, 1019, 1050, 1067, 1069, 1086, 1094, 1098, 1101, 1133, 1158, 1194, 1211, 1233, 1294, 1331, 1346
Offset: 1

Views

Author

Keywords

Crossrefs

A025328 Numbers that are the sum of 3 nonzero squares in exactly 8 ways.

Original entry on oeis.org

374, 446, 486, 521, 566, 569, 621, 629, 686, 701, 710, 729, 749, 770, 789, 809, 810, 825, 849, 857, 869, 902, 945, 953, 969, 971, 1014, 1022, 1029, 1053, 1085, 1125, 1146, 1174, 1217, 1221, 1241, 1242, 1245, 1249, 1250, 1253, 1254, 1259, 1269, 1277, 1334, 1379
Offset: 1

Views

Author

Keywords

Crossrefs

A025329 Numbers that are the sum of 3 nonzero squares in exactly 9 ways.

Original entry on oeis.org

614, 626, 689, 774, 914, 929, 974, 989, 990, 1025, 1062, 1070, 1074, 1091, 1097, 1118, 1134, 1139, 1166, 1179, 1193, 1205, 1229, 1251, 1262, 1266, 1289, 1298, 1305, 1310, 1325, 1409, 1433, 1446, 1470, 1541, 1571, 1611, 1637, 1638, 1745, 1754, 1821, 1834
Offset: 1

Views

Author

Keywords

Crossrefs

A025330 Numbers that are the sum of 3 nonzero squares in exactly 10 ways.

Original entry on oeis.org

594, 734, 761, 794, 801, 846, 881, 909, 926, 965, 986, 1001, 1026, 1041, 1089, 1130, 1190, 1209, 1214, 1226, 1265, 1274, 1322, 1326, 1329, 1341, 1370, 1382, 1386, 1505, 1509, 1553, 1557, 1581, 1586, 1613, 1625, 1658, 1689, 1691, 1709, 1713, 1725, 1739
Offset: 1

Views

Author

Keywords

Crossrefs

A025396 Numbers that are the sum of 3 positive cubes in exactly 2 ways.

Original entry on oeis.org

251, 1009, 1366, 1457, 1459, 1520, 1730, 1737, 1756, 1763, 1793, 1854, 1945, 2008, 2072, 2241, 2414, 2456, 2458, 2729, 2736, 3060, 3391, 3457, 3592, 3599, 3655, 3745, 3926, 4105, 4112, 4131, 4168, 4229, 4320, 4376, 4402, 4437, 4447, 4473, 4528, 4616
Offset: 1

Views

Author

Keywords

Comments

Subset of A008917; A025397 gives examples of numbers which are in A008917 but not here. - R. J. Mathar, May 28 2008
A025456(a(n)) = 2. - Reinhard Zumkeller, Apr 23 2009
Superset of A024974 . - Christian N. K. Anderson, Apr 11 2013

Examples

			a(1) = 251 = 1^3+5^3+5^3 = 2^3+3^3+6^3. - _Christian N. K. Anderson_, Apr 11 2013
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], Length[DeleteCases[PowersRepresentations[#,3,3], ?(MemberQ[#,0]&)]] == 2&] (* _Harvey P. Dale, Jan 18 2012 *)
  • PARI
    is(n)=k=ceil((n-2)^(1/3)); d=0; for(a=1,k,for(b=a,k,for(c=b,k,if(a^3+b^3+c^3==n,d++))));d
    n=3;while(n<5000,if(is(n)==2,print1(n,", "));n++) \\ Derek Orr, Aug 27 2015
Previous Showing 11-18 of 18 results.