cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A025323 Numbers that are the sum of 3 nonzero squares in exactly 3 ways.

Original entry on oeis.org

54, 66, 81, 86, 89, 99, 101, 110, 114, 126, 131, 149, 150, 162, 166, 173, 174, 179, 182, 185, 186, 216, 219, 221, 222, 225, 227, 233, 237, 241, 242, 245, 258, 264, 274, 275, 286, 291, 302, 305, 309, 315, 318, 323, 324, 334, 338, 344, 347, 349, 356, 361, 366, 377, 396
Offset: 1

Views

Author

Keywords

Examples

			182 is a term because 182 = 1^2 + 9^2 + 10^2 = 2^2 + 3^2 + 13^2 = 5^2 + 6^2 + 11^2 and there are no more such sums of three nonzero squares giving 182. - _David A. Corneth_, Feb 13 2019
		

Crossrefs

Programs

Formula

{n: A025427(n) = 3}. - R. J. Mathar, Aug 05 2022

A025324 Numbers that are the sum of 3 nonzero squares in exactly 4 ways.

Original entry on oeis.org

129, 134, 146, 153, 161, 171, 189, 198, 201, 234, 243, 246, 249, 251, 254, 257, 261, 270, 278, 285, 290, 293, 294, 299, 339, 353, 362, 363, 365, 371, 378, 387, 390, 393, 395, 405, 406, 409, 411, 417, 429, 451, 454, 465, 467, 469, 473, 477, 485, 501, 502, 510, 514, 516
Offset: 1

Views

Author

Keywords

Examples

			299 is a term because 299 = 1^2 + 3^2 + 17^2 = 3^2 + 11^2 + 13^2 = 5^2 + 7^2 + 15^2 = 7^2 + 9^2 + 13^2 and there are no more such sums of four nonzero squares giving 182. - _David A. Corneth_, Feb 13 2019
		

Crossrefs

Programs

A025325 Numbers that are the sum of 3 nonzero squares in exactly 5 ways.

Original entry on oeis.org

194, 206, 230, 266, 269, 281, 350, 354, 381, 386, 389, 398, 401, 402, 413, 414, 419, 437, 449, 450, 470, 474, 482, 491, 525, 539, 554, 563, 579, 582, 585, 590, 601, 611, 630, 635, 638, 642, 646, 722, 769, 776, 781, 786, 819, 824, 829, 830, 834, 851, 867, 874, 878, 886
Offset: 1

Views

Author

Keywords

Crossrefs

A025326 Numbers that are the sum of 3 nonzero squares in exactly 6 ways.

Original entry on oeis.org

209, 297, 306, 314, 321, 326, 329, 342, 425, 426, 434, 441, 458, 459, 489, 497, 513, 530, 531, 534, 542, 546, 558, 561, 593, 602, 605, 633, 649, 650, 657, 659, 662, 665, 674, 675, 678, 681, 693, 698, 699, 705, 706, 713, 714, 725, 737, 738, 741, 746, 747, 750, 755, 758
Offset: 1

Views

Author

Keywords

Crossrefs

A025328 Numbers that are the sum of 3 nonzero squares in exactly 8 ways.

Original entry on oeis.org

374, 446, 486, 521, 566, 569, 621, 629, 686, 701, 710, 729, 749, 770, 789, 809, 810, 825, 849, 857, 869, 902, 945, 953, 969, 971, 1014, 1022, 1029, 1053, 1085, 1125, 1146, 1174, 1217, 1221, 1241, 1242, 1245, 1249, 1250, 1253, 1254, 1259, 1269, 1277, 1334, 1379
Offset: 1

Views

Author

Keywords

Crossrefs

A025329 Numbers that are the sum of 3 nonzero squares in exactly 9 ways.

Original entry on oeis.org

614, 626, 689, 774, 914, 929, 974, 989, 990, 1025, 1062, 1070, 1074, 1091, 1097, 1118, 1134, 1139, 1166, 1179, 1193, 1205, 1229, 1251, 1262, 1266, 1289, 1298, 1305, 1310, 1325, 1409, 1433, 1446, 1470, 1541, 1571, 1611, 1637, 1638, 1745, 1754, 1821, 1834
Offset: 1

Views

Author

Keywords

Crossrefs

A025330 Numbers that are the sum of 3 nonzero squares in exactly 10 ways.

Original entry on oeis.org

594, 734, 761, 794, 801, 846, 881, 909, 926, 965, 986, 1001, 1026, 1041, 1089, 1130, 1190, 1209, 1214, 1226, 1265, 1274, 1322, 1326, 1329, 1341, 1370, 1382, 1386, 1505, 1509, 1553, 1557, 1581, 1586, 1613, 1625, 1658, 1689, 1691, 1709, 1713, 1725, 1739
Offset: 1

Views

Author

Keywords

Crossrefs

A345085 Numbers that are the sum of three third powers in exactly seven ways.

Original entry on oeis.org

2016496, 4525632, 4783680, 5268024, 6366816, 7451352, 7457120, 8275392, 9063144, 9086104, 9931167, 10036872, 10266138, 10371024, 10973880, 12002472, 12452049, 12983517, 13639816, 13641480, 13818384, 13832729, 14090112, 15081984, 15212016, 15685704, 16131968
Offset: 1

Views

Author

David Consiglio, Jr., Jun 07 2021

Keywords

Comments

Differs from A345086 at term 2 because 2562624 = 7^3 + 35^3 + 135^3 = 7^3 + 63^3 + 131^3 = 11^3 + 99^3 + 115^3 = 16^3 + 45^3 + 134^3 = 29^3 + 102^3 + 112^3 = 35^3 + 59^3 + 131^3 = 50^3 + 84^3 + 121^3 = 68^3 + 71^3 + 122^3.

Examples

			2016496 is a term because 2016496 = 5^3 + 71^3 + 117^3 = 9^3 + 65^3 + 119^3 = 18^3 + 20^3 + 125^3 = 46^3 + 96^3 + 99^3 = 53^3 + 59^3 + 117^3 = 65^3 + 89^3 + 99^3 = 82^3 + 84^3 + 93^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 7])
    for x in range(len(rets)):
        print(rets[x])
Previous Showing 11-18 of 18 results.