cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A219329 Numbers that can be expressed as the sum of three nonnegative cubes in three ways.

Original entry on oeis.org

5104, 5832, 9288, 9729, 10261, 10773, 12104, 12221, 12384, 14175, 17604, 17928, 19034, 20691, 21412, 21888, 24416, 24480, 28792, 29457, 30528, 31221, 32850, 34497, 35216, 36288, 38259, 39339, 39376, 39528, 40060, 40097, 40832, 40851, 41033, 41040, 41364
Offset: 1

Views

Author

Keywords

Comments

Index of A051343 = 9, superset of index of A025456 = 3.
Subset of A001239.

Examples

			a(1) = 5104 = 1^3+12^3+15^3 = 2^3+10^3+16^3 = 9^3+10^3+15^3.
		

Crossrefs

Other sums of cubes: A025402, A025398, A024974, A001239, A008917.
Cf. A025396.

Programs

  • Mathematica
    Select[Range[42000],Length[PowersRepresentations[#,3,3]]==3&] (* Harvey P. Dale, Sep 28 2016 *)

A347362 Smallest number which can be decomposed into exactly n sums of three distinct positive cubes, but cannot be decomposed into more than one such sum containing the same cube.

Original entry on oeis.org

36, 1009, 12384, 82278, 746992, 5401404, 15685704, 26936064, 137763072, 251066304, 857520000, 618817536, 3032856000, 2050677000, 6100691904, 36013192704, 16405416000, 96569712000, 48805535232, 131243328000, 611996202000, 201153672000
Offset: 1

Views

Author

Gleb Ivanov, Aug 29 2021

Keywords

Comments

No cube should appear in two or more sums. 5104 = 15^3 + 10^3 + 9^3 = 15^3 + 12^3 + 1^3 = 16^3 + 10^3 + 2^3 is not a(3), because 15^3 appears in more than one sum.

Examples

			a(1) = 36 = 1^3 + 2^3 + 3^3.
a(2) = 1009 = 1^3 + 2^3 + 10^3 = 4^3 + 6^3 + 9^3.
a(3) = 12384 = 1^3 + 6^3 + 23^3 = 2^3 + 12^3 + 22^3 = 15^3 + 16^3 + 17^3.
		

Crossrefs

Programs

  • Mathematica
    Monitor[Do[k=1;While[Length@Union@Flatten[p=PowersRepresentations[k,3,3]]!=n*3||Length@p!=n||MemberQ[Flatten@p,0],k++];Print@k,{n,10}],k] (* Giorgos Kalogeropoulos, Sep 03 2021 *)

Extensions

a(13)-a(15) from Jon E. Schoenfield, Sep 02 2021
a(16)-a(22) from Gleb Ivanov, Sep 12 2021
Previous Showing 11-12 of 12 results.