A215746
Numerator of Sum_{i=0..n} (-1)^i*4/(2*i + 1).
Original entry on oeis.org
4, 8, 52, 304, 1052, 10312, 147916, 135904, 2490548, 44257352, 47028692, 1023461776, 5385020324, 15411418072, 467009482388, 13895021563328, 14442004718228, 13926277743608, 533322720625196, 516197940314096, 21831981985010836, 911392701638017048, 937558224301357108
Offset: 0
a(2) = 52 because 4 - 4/3 + 4/5 = 60/15 - 20/15 + 12/15 = 52/15.
-
N:= 100; # to get terms up to a[N]
T[0]:= 4;
A215746[0]:= 4;
for i from 1 to N do
T[i]:= T[i-1] + (-1)^i*4/(2*i+1);
A215746[i]:= numer(T[i])
od:
[seq](A215746[i],i=0..N); # Robert Israel, Apr 27 2014
-
Table[Numerator[Sum[(-1)^i 4/(2i + 1), {i, 0, n}]], {n, 0, 39}]
A275790
Triangle T(n, m) appearing in the expansion of the scaled phase space coordinate qhat of the plane pendulum in terms of the Jacobi nome q and sin(v) multiplying even powers of 2*cos(v), with v = u/((2/Pi)*K(k)).
Original entry on oeis.org
1, 8, 1, -32, 11, 3, -736, -92, 9, 15, 2816, -593, -249, -65, 35, 48976, 6122, 1581, -970, -1295, 315, -951424, 61252, 67791, 46030, 18515, -21735, 3465, -1045952, -130744, -92082, -30445, 14455, 53928, -25179, 3003, 26933248, 1069361, -1666047, -634255, -1167740, -1258236, 1562253, -471471, 45045, 634836808, 79354601, 24881793, 17914550, 30289840, 12635028, -71064609, 42480438, -9594585, 765765
Offset: 0
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 ...
0: 1
1: 8 1
2: -32 11 3
3: -736 -92 9 15
4: 2816 -593 -249 -65 35
5: 48976 6122 1581 -970 -1295 315
...
row n=6: -951424 61252 67791 46030 18515 -21735 3465,
row n=7: -1045952 -130744 -92082 -30445 14455 53928 -25179 3003,
row n=8: 26933248 1069361 -1666047 -634255 -1167740 -1258236 1562253 -471471 45045,
row n=9: 634836808 79354601 24881793 17914550 30289840 12635028 -71064609 42480438 -9594585 765765.
...
The corresponding L(n) = A025547(n+1) numbers are 1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535,...
n=4: the contribution to qhat(v, q) of order q^4 is (q^4/315)*(2816 - 593*(2*cos(v))^2 - 249*(2*cos(v))^4 - 65*(2*cos(v))^6 + 35*(2*cos(v))^8).
A346781
a(n) is the numerator of the sum of the first n terms of 1 - 1/3 - 1/5 + 1/7 + 1/9 - 1/11 - 1/13 + ... .
Original entry on oeis.org
1, 2, 7, 64, 227, 2182, 24901, 27904, 519413, 9103082, 8410247, 207985216, 1106853941, 3134651098, 85885292267, 2808012157952, 2944757946677, 402260886146, 14238994069127, 14850593365952, 632726700580207, 26229300849325726, 25294817897063581, 1230908174013784832
Offset: 1
1, 2/3, 7/15, 64/105, 227/315, 2182/3465, 24901/45045, 27904/45045, ...
- Barry Mazur, Chapter IV.1 Algebraic Numbers, page 316, in The Princeton Companion to Mathematics, ed. Timothy Gowers, Princeton University Press, Princeton and Oxford, 2008.
The corresponding denominators are
A025547.
-
a346781(limit)={my(s=0,b(n)=1/(n*sign(4-(n+2)%8)));forstep(k=1,limit,2,print1(numerator(s+=b(k)),", "))};
a346781(47)
A370691
Square array read by upward antidiagonals: T(n, k) = denominator( 2*k!*(-2)^k*Sum_{m=1..n}( 1/(2*m-1)^(k+1) ) ).
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 15, 9, 1, 1, 105, 225, 27, 1, 765765, 405810405, 91398648466125, 48049812916875, 1033788065625, 89339709375, 3796875, 729, 1, 1, 1, 315, 11025, 3375, 27, 1, 1, 3465, 99225, 1157625, 16875, 81, 1, 1, 45045, 12006225, 31255875, 40516875, 253125, 243, 1, 1, 45045, 2029052025
Offset: 0
array begins:
1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1
3, 9, 27, 27, 81, 243
15, 225, 3375, 16875, 253125, 759375
105, 11025, 1157625, 40516875, 4254271875, 89339709375
315, 99225, 31255875, 3281866875, 1033788065625, 65128648134375
3465, 12006225, 41601569625, 48049812916875, 166492601756971875, 115379373017581509375
Cf.
A255008 (denominators polygamma(n, 1) - polygamma(n, k)).
Cf.
A255009 (numerators polygamma(n, 1) - polygamma(n, k)).
-
A := (n, k) -> Psi(k, n + 1/2) - Psi(k, 1/2):
seq(lprint(seq(denom(A(n, k)), k = 0..4)), n=0..6);
-
T(n, k) = denominator(sum(m=1, n, 1/(2*m-1)^(k+1))*k!*(-2)^k*2)
Comments