cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A027297 a(n) = Sum_{k=0..floor((n-3)/2)} T(n,k) * T(n,k+3), with T given by A026022.

Original entry on oeis.org

1, 4, 30, 104, 567, 1952, 9453, 32900, 150029, 528956, 2327156, 8303216, 35679835, 128633440, 543723257, 1977821700, 8260172309, 30278441400, 125314192728, 462409521376, 1900445030538, 7053236494784, 28828752666375, 107536008386924, 437602449724101
Offset: 3

Views

Author

Keywords

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027298 a(n) = Sum_{k=0..m} (k+1) * A026022(n, k), where m=n for n=0,1 and m = floor((n+3)/2) for n >= 2.

Original entry on oeis.org

1, 3, 8, 20, 43, 101, 208, 472, 958, 2126, 4288, 9368, 18835, 40673, 81632, 174704, 350266, 744290, 1491232, 3150424, 6309246, 13265138, 26557408, 55610960, 111311068, 232279836, 464856832, 967155824, 1935314563
Offset: 0

Views

Author

Keywords

A027299 a(n) = Sum_{k=0..m} (k+1) * A026022(n, m-k), where m=n for n=0,1 and m = floor((n+3)/2) for n >= 2.

Original entry on oeis.org

1, 3, 8, 20, 32, 79, 128, 312, 512, 1234, 2048, 4888, 8192, 19387, 32768, 76976, 131072, 305902, 524288, 1216536, 2097152, 4840950, 8388608, 19273360, 33554432, 76766564, 134217728, 305877616, 536870912, 1219164499, 2147483648
Offset: 0

Views

Author

Keywords

A026032 a(n) = C(3n,n) - C(3n,n-4).

Original entry on oeis.org

1, 3, 15, 84, 494, 2988, 18411, 114950, 724845, 4606095, 29451240, 189264672, 1221417360, 7910510312, 51388786107, 334716829674, 2185180379179, 14294808917025, 93680975707935, 614925987859260, 4042236129950970
Offset: 0

Views

Author

Keywords

Crossrefs

a(n) = T(3n, n), where T is defined in A026022.

Programs

  • Mathematica
    Table[Binomial[3n,n]-Binomial[3n,n-4],{n,0,20}] (* Harvey P. Dale, Dec 14 2012 *)
  • PARI
    a(n) = binomial(3*n,n) - binomial(3*n,n-4); \\ Michel Marcus, May 10 2020

Formula

G.f.: (2*g-1)*(2*g^2-2*g+1)/((3*g-1)*(g-1)^4) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 09 2011

Extensions

More terms from Ralf Stephan, Jan 09 2005

A026033 C(4n,n) - C(4n,n-4).

Original entry on oeis.org

1, 4, 28, 220, 1819, 15484, 134320, 1180764, 10482340, 93766288, 843822148, 7631018564, 69291185474, 631334484200, 5769124912320, 52851389067420, 485242722376524, 4463782855666480, 41133265444555120
Offset: 0

Views

Author

Keywords

Crossrefs

a(n) = T(4n, n), where T is defined in A026022.

Formula

G.f.: (g-2)*(2-2*g+g^2)*g^2/(3*g-4) where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011

Extensions

More terms from Ralf Stephan, Jan 09 2005
Previous Showing 11-15 of 15 results.