cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A026417 a(n) = least positive integer > a(n-1) and not a(i)*a(j) for 1<=i

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 26, 29, 31, 34, 37, 38, 41, 43, 46, 47, 49, 53, 58, 59, 61, 62, 67, 71, 73, 74, 79, 81, 82, 83, 86, 89, 94, 97, 101, 103, 105, 106, 107, 108, 109, 113, 118, 120, 121, 122, 127
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A026416 and references therein.

Programs

  • Mathematica
    a = {1, 3}; used = {a[[1]]*a[[2]]}; Do[k = a[[-1]] + 1; While[MemberQ[used, k], k++]; used = Union[used, k*a]; AppendTo[a, k], {n, 3, 60}]; a (* Ivan Neretin, Mar 07 2016 *)

Extensions

Name clarified by Robert C. Lyons, Feb 08 2025

A026422 a(n) = least positive integer > a(n-1) and not a(i)*a(j) for 1 <= i <= j < n.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 20, 23, 27, 28, 29, 30, 31, 32, 37, 41, 42, 43, 44, 45, 47, 48, 50, 52, 53, 59, 61, 63, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 83, 89, 92, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Apart from initial term, same as A026424.
Cf. A026416 and references therein.

Programs

  • Mathematica
    a[1]=1; a[n_] := a[n] = (t= Union[Flatten[Table[a[i] a[j], {i, 1, n-1}, {j, i, n-1}]]]; Do[If[FreeQ[t, k], an = k; Break[]], {k, a[n-1]+1, Last[t]+1}]; an); Array[a, 60] (* Jean-François Alcover, May 06 2011 *)
    Select[Range[110], OddQ[Total[FactorInteger[#]][[2]]] &] (* T. D. Noe, May 07 2011 *)
    g = 110; t = Array[1 &, g];
    Table[If[t[[j]] == 1, t[[j*i]] = 0, t[[i*j]] = 1], {j, 2, g/2}, {i, 2, g/j}]; Flatten[Position[t, 1]] (* Horst H. Manninger, Mar 15 2023 *)
  • PARI
    is(n)=bigomega(n)%2 || n==1 \\ Charles R Greathouse IV, Sep 16 2015
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, primepi, integer_nthroot
    def A026422(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,m)) for m in range(2,x.bit_length()+1,2)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Apr 10 2025

Extensions

Name corrected by Charles R Greathouse IV, Sep 16 2015

A026423 a(n) = least positive integer > a(n-1) and not a(i)*a(j) for 1<=i<=j<=n, n >= 2.

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 17, 19, 22, 23, 26, 27, 29, 31, 34, 37, 38, 41, 43, 45, 46, 47, 53, 54, 58, 59, 61, 62, 63, 67, 71, 72, 73, 74, 75, 79, 82, 83, 86, 89, 90, 94, 96, 97, 99, 101, 103, 105, 106, 107, 109, 113, 117, 118, 120
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A026416 and references therein.

Programs

  • Mathematica
    a = {1, 3}; used = {a[[1]]^2, a[[1]]*a[[2]], a[[2]]^2}; Do[k = a[[-1]] + 1; While[MemberQ[used, k], k++]; AppendTo[a, k]; used = Union[used, k*a], {n, 3, 60}]; a (* Ivan Neretin, Mar 07 2016 *)

A026427 a(n) = least positive integer > a(n-1) and not equal to a(i)*a(j) for 1<=i<=j<=n.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 17, 19, 22, 23, 26, 27, 29, 31, 34, 37, 38, 41, 43, 45, 46, 47, 53, 54, 58, 59, 61, 62, 63, 67, 71, 72, 73, 74, 75, 79, 82, 83, 86, 89, 90, 94, 96, 97, 99, 101, 103, 105, 106, 107, 109, 113, 117, 118, 120, 122, 125, 126, 127, 128, 131, 134
Offset: 1

Views

Author

Keywords

Comments

Starting from 3, include only those numbers that aren't the product of two numbers already included.
Numbers >3 not included: 9,12,15,18,21,24,30,33,39,42,51,57,66,69,78,....
Appears to be A026423 shifted left. - R. J. Mathar, Jun 24 2025

Examples

			9 is excluded because 9=3*3. 10 is included because 10 is not the product of any two of 3,4,5,6,7,8.
		

Crossrefs

Cf. A066680.
Cf. A026416 and references therein.

Programs

  • Mathematica
    f[s_List] := Block[{k = s[[ -1]] + 1, ss = Times @@@ Tuples[s, 2]}, While[MemberQ[ss, k], k++ ]; Append[s, k]]; Nest[f, {3}, 65] (* Robert G. Wilson v Sep 23 2006 *)

Extensions

Edited by N. J. A. Sloane, Sep 14 2008 at the suggestion of R. J. Mathar

A026419 a(n) = least positive integer > a(n-1) and not a(i)*a(j) for 1<=i

Original entry on oeis.org

1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 57, 58, 59, 61, 62, 67, 69, 71, 73, 74, 79, 81, 82, 83, 86, 87, 89, 93, 94, 97, 101, 103, 106
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A026416 and references therein.

Programs

  • Mathematica
    a = {1, 4}; used = {a[[1]]*a[[2]]}; Do[k = a[[-1]] + 1; While[MemberQ[used, k], k++]; used = Union[used, k*a]; AppendTo[a, k], {n, 3, 60}]; a (* Ivan Neretin, Mar 07 2016 *)

Extensions

Name clarified by Robert C. Lyons, Feb 08 2025

A026420 a(n) = least positive integer > a(n-1) and not a(i)*a(j) for 1<=i

Original entry on oeis.org

2, 4, 5, 6, 7, 9, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 33, 37, 39, 40, 41, 43, 47, 48, 49, 51, 53, 56, 57, 59, 61, 67, 69, 70, 71, 72, 73, 79, 81, 83, 87, 88, 89, 93, 97, 101, 103, 104, 107, 109, 110, 111, 113, 120, 121, 123, 127
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A026416 and references therein.

Programs

  • Mathematica
    a = {2, 4}; used = {a[[1]]*a[[2]]}; Do[k = a[[-1]] + 1; While[MemberQ[used, k], k++]; used = Union[used, k*a]; AppendTo[a, k], {n, 3, 60}]; a (* Ivan Neretin, Mar 07 2016 *)

Extensions

Name clarified by Robert C. Lyons, Feb 08 2025

A026421 a(n) = least positive integer > a(n-1) and not a(i)*a(j) for 1<=i

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 26, 29, 31, 34, 37, 38, 41, 43, 46, 47, 49, 53, 58, 59, 61, 62, 67, 71, 73, 74, 79, 81, 82, 83, 86, 89, 94, 97, 101, 103, 105, 106, 107, 108, 109, 113, 118, 120, 121, 122, 127, 131
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A026416 and references therein.

Programs

  • Mathematica
    a = {3, 4}; used = {a[[1]]*a[[2]]}; Do[k = a[[-1]] + 1; While[MemberQ[used, k], k++]; used = Union[used, k*a]; AppendTo[a, k], {n, 3, 60}]; a (* Ivan Neretin, Mar 07 2016 *)

Formula

a(n) = A026417(n+1). - R. J. Mathar, May 28 2008

Extensions

Name clarified by Robert C. Lyons, Feb 08 2025

A026425 a(n) = least positive integer > a(n-1) and not a(i)*a(j) for 1<=i<=j<=n, n >= 2.

Original entry on oeis.org

1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 26, 27, 29, 31, 33, 34, 37, 38, 39, 41, 43, 46, 47, 51, 53, 57, 58, 59, 61, 62, 67, 69, 71, 73, 74, 79, 82, 83, 86, 87, 89, 93, 94, 97, 101, 103, 106, 107, 109, 111, 113
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A026416 and references therein.

Programs

  • Mathematica
    a = {1, 4}; used = {a[[1]]^2, a[[1]]*a[[2]], a[[2]]^2}; Do[k = a[[-1]] + 1; While[MemberQ[used, k], k++]; AppendTo[a, k]; used = Union[used, k*a], {n, 3, 60}]; a (* Ivan Neretin, Mar 07 2016 *)

A026426 a(n) = least positive integer > a(n-1) and not a(i)*a(j) for 1<=i<=j<=n, n >= 2.

Original entry on oeis.org

2, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 23, 27, 29, 31, 32, 33, 37, 39, 40, 41, 43, 47, 48, 50, 51, 53, 56, 57, 59, 61, 67, 69, 70, 71, 72, 73, 79, 83, 87, 88, 89, 93, 97, 98, 101, 103, 104, 107, 109, 110, 111, 113, 120, 123, 125, 127
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A026416 and references therein.

Programs

  • Mathematica
    a = {2, 4}; used = {a[[1]]^2, a[[1]]*a[[2]], a[[2]]^2}; Do[k = a[[-1]] + 1; While[MemberQ[used, k], k++]; AppendTo[a, k]; used = Union[used, k*a], {n, 3, 66}]; a (* Ivan Neretin, Mar 07 2016 *)

A066512 Least nonnegative integer not the sum or product of any previous pair. a(1)=0.

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 10, 13, 16, 19, 22, 25, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 94, 97, 103, 106, 109, 115, 118, 121, 126, 129, 135, 138, 141, 147, 150, 153, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 193, 196, 199
Offset: 1

Views

Author

Brian Galebach, Jan 04 2002

Keywords

Examples

			a(13)=30, which is not a(i)+a(j) or a(i)*a(j) for any distinct i,j < 13.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    def agen(): # generator of terms
        a, sums, products = [0], set(), set()
        yield from a
        for k in count(0):
            if k not in sums and k not in products:
                yield k
                sums.update(k+a[i] for i in range(len(a)))
                products.update(k*a[i] for i in range(len(a)))
                a.append(k)
            sums.discard(k)
            products.discard(k)
    print(list(islice(agen(), 61))) # Michael S. Branicky, Jun 09 2025
Previous Showing 11-20 of 20 results.