cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A026540 a(n) = T(n,n-3), T given by A026536. Also number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 3.

Original entry on oeis.org

1, 2, 6, 16, 36, 104, 215, 635, 1275, 3786, 7518, 22344, 44170, 131264, 259002, 769578, 1517418, 4508580, 8888495, 26412001, 52077234, 154773696, 305257251, 907432695, 1790353357, 5323519838, 10507386918, 31251588060
Offset: 3

Views

Author

Keywords

Crossrefs

Cf. A026536.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k], T[n-1, k-2] + T[n-1, k]] ]]; Table[T[n,n-3], {n,3,40}] (* G. C. Greubel, Apr 10 2022 *)
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k < 0 or n < 0: return 0
        elif k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A026540(n): return T(n,n-3)
    [A026540(n) for n in (3..40)] # G. C. Greubel, Apr 10 2022

Formula

a(n) = A026536(n, n-3).

A026541 a(n) = T(n,n-4), T given by A026536. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 4.

Original entry on oeis.org

1, 2, 9, 19, 65, 136, 430, 886, 2721, 5538, 16793, 33887, 102102, 204856, 615024, 1229280, 3682545, 7341786, 21963161, 43712603, 130648089, 259726104, 775797750, 1541084142, 4601346295, 9135694750, 27270124455, 54125522793
Offset: 4

Views

Author

Keywords

Crossrefs

Cf. A026536.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
    Table[T[n, n-4], {n, 4, 45}] (* G. C. Greubel, Apr 11 2022 *)
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k < 0 or n < 0: return 0
        elif k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A026541(n): return T(n,n-4)
    [A026541(n) for n in (4..45)] # G. C. Greubel, Apr 11 2022

Formula

a(n) = A026536(n, n-4).

A026545 a(n) = T(2n-1, n-1), T given by A026536.

Original entry on oeis.org

1, 1, 6, 19, 79, 306, 1247, 5069, 20889, 86479, 360205, 1506462, 6324176, 26630423, 112439094, 475838291, 2017827545, 8572102713, 36474080228, 155418445421, 663102388605, 2832471934357, 12111891668431, 51841780973922, 222092855692496, 952237575555176, 4085873505697131, 17544024146446621
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A026536.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
    Table[T[2*n-1, n-1], {n,40}] (* G. C. Greubel, Apr 11 2022 *)
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k < 0 or n < 0: return 0
        elif k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A026545(n): return T(2*n-1, n-1)
    [A026545(n) for n in (1..40)] # G. C. Greubel, Apr 11 2022

Formula

a(n) = A026536(2*n-1, n-1).

Extensions

Terms a(20) onward added by G. C. Greubel, Apr 11 2022

A026546 a(n) = T(2n-1,n-2), T given by A026536.

Original entry on oeis.org

1, 2, 10, 36, 150, 602, 2485, 10256, 42687, 178300, 747912, 3146936, 13278707, 56163758, 238052050, 1010857520, 4299545769, 18314436414, 78115839734, 333583225740, 1426072211137, 6102528959956, 26138050436822, 112046904456640, 480686415837200, 2063641522153406, 8865329237958042, 38108667849379540
Offset: 2

Views

Author

Keywords

Crossrefs

Cf. A026536.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
    Table[T[2n-1, n-2], {n,2,40}] (* G. C. Greubel, Apr 11 2022 *)
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k < 0 or n < 0: return 0
        elif k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A026546(n): return T(2*n-1, n-2)
    [A026546(n) for n in (2..40)] # G. C. Greubel, Apr 11 2022

Formula

a(n) = A026536(2*n-1, n-2).

Extensions

Terms a(20) onward added by G. C. Greubel, Apr 11 2022

A026547 a(n) = T(n, floor(n/2)), T given by A026536.

Original entry on oeis.org

1, 1, 1, 1, 5, 6, 16, 19, 65, 79, 251, 306, 1016, 1247, 4117, 5069, 16913, 20889, 69865, 86479, 290455, 360205, 1212905, 1506462, 5085224, 6324176, 21389824, 26630423, 90226449, 112439094, 381519416, 475838291, 1616684241, 2017827545
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026536.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
    Table[T[n, Floor[n/2]], {n,0,40}] (* G. C. Greubel, Apr 11 2022 *)
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k < 0 or n < 0: return 0
        elif k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A026547(n): return T(n, n//2)
    [A026547(n) for n in (0..40)] # G. C. Greubel, Apr 11 2022

Formula

a(n) = A026536(n, floor(n/2)).

A352972 a(n) = Sum_{j=0..2*n} Sum_{k=0..j} A026536(j, k).

Original entry on oeis.org

1, 6, 35, 204, 1199, 7089, 42070, 250269, 1491262, 8896310, 53118352, 317373194, 1897253203, 11346582851, 67882263130, 406231442387, 2431626954934, 14558306758418, 87177151134954, 522110098886882, 3127380060424476, 18734897945679836, 112245303177542790, 672552484035697364, 4030148584900522009
Offset: 0

Views

Author

G. C. Greubel, Apr 12 2022

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
    A352972[n_]:= A352972[n]= Sum[T[j,k], {j,0,2*n}, {k,0,j}];
    Table[A352972[n], {n,0,40}]
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A352972(n): return sum(sum(T(j,k) for k in (0..j)) for j in (0..2*n))
    [A352972(n) for n in (3..40)]

Formula

a(n) = Sum_{j=0..2*n} Sum_{k=0..j} A026536(j, k).

A026552 Irregular triangular array T read by rows: T(n, 0) = T(n, 2*n) = 1, T(n, 1) = T(n, 2*n-1) = floor(n/2 + 1), for even n >= 2, T(n, k) = T(n-1, k-2) + T(n-1, k-1) + T(n-1, k), otherwise T(n, k) = T(n-1, k-2) + T(n-1, k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 2, 4, 4, 4, 2, 1, 1, 3, 7, 10, 12, 10, 7, 3, 1, 1, 3, 8, 13, 19, 20, 19, 13, 8, 3, 1, 1, 4, 12, 24, 40, 52, 58, 52, 40, 24, 12, 4, 1, 1, 4, 13, 28, 52, 76, 98, 104, 98, 76, 52, 28, 13, 4, 1, 1, 5, 18, 45, 93, 156, 226, 278
Offset: 0

Views

Author

Keywords

Comments

T(n, k) = number of integer strings s(0)..s(n) such that s(0) = 0, s(n) = n-k, |s(i)-s(i-1)|<=1 if i is even or i = 1, |s(i)-s(i-1)| = 1 if i is odd and i >= 3.

Examples

			First 5 rows:
  1;
  1, 1, 1;
  1, 2, 3,  2,  1;
  1, 2, 4,  4,  4,  2,  1;
  1, 3, 7, 10, 12, 10,  7,  3,  1;
		

Crossrefs

Programs

  • Mathematica
    z = 12; t[n_, 0] := 1; t[n_, k_] := 1 /; k == 2 n; t[n_, 1] := Floor[n/2 + 1]; t[n_, k_] := Floor[n/2 + 1] /; k == 2 n - 1; t[n_, k_] := t[n, k] = If[EvenQ[n], t[n - 1, k - 2] + t[n - 1, k - 1] + t[n - 1, k], t[n - 1, k - 2] + t[n - 1, k]]; u = Table[t[n, k], {n, 0, z}, {k, 0, 2 n}];
    TableForm[u] (* A026552 array *)
    v = Flatten[u] (* A026552 sequence *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+2)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-2)
    flatten([[T(n,k) for k in (0..2*n)] for n in (0..10)]) # G. C. Greubel, Dec 17 2021

Formula

Sum_{k=0..2*n} T(n,k) = A026565(n). - G. C. Greubel, Dec 17 2021

Extensions

Updated by Clark Kimberling, Aug 28 2014

A026519 Irregular triangular array T read by rows: T(n, k) = T(n-1, k-2) + T(n-1, k) if (n mod 2) = 0, otherwise T(n-1, k-2) + T(n-1, k-1) + T(n-1, k), with T(n, 0) = T(n, 2*n) = 1, T(n, 1) = T(n, 2*n-1) = floor((n+1)/2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 4, 4, 2, 1, 1, 2, 5, 6, 8, 6, 5, 2, 1, 1, 3, 8, 13, 19, 20, 19, 13, 8, 3, 1, 1, 3, 9, 16, 27, 33, 38, 33, 27, 16, 9, 3, 1, 1, 4, 13, 28, 52, 76, 98, 104, 98, 76, 52, 28, 13, 4, 1, 1, 4, 14, 32, 65, 104, 150, 180, 196, 180, 150, 104, 65, 32, 14, 4, 1
Offset: 0

Views

Author

Keywords

Comments

T(n, k) = number of integer strings s(0)..s(n) such that s(0) = 0, s(n) = n-k, |s(i) - s(i-1)| = 1 if i is even, |s(i) - s(i-1)| <= 1 if i is odd.

Examples

			First 5 rows:
1
1 ... 1 ... 1
1 ... 1 ... 2 ... 1 ... 1
1 ... 2 ... 4 ... 4 ... 4 ... 2 ... 1
1 ... 2 ... 5 ... 6 ... 8 ... 6 ... 5 ... 2 ... 1
		

Crossrefs

Programs

  • Mathematica
    z = 12; t[n_, 0]:= 1; t[n_, k_]:= 1/; k==2n; t[n_, 1]:= Floor[(n+1)/2]; t[n_, k_] := Floor[(n+1)/2] /; k==2n-1; t[n_, k_]:= t[n, k]= If[EvenQ[n], t[n-1, k-2] + t[n-1, k], t[n-1, k-2] + t[n-1, k-1] + t[n-1, k]];
    u = Table[t[n, k], {n, 0, z}, {k, 0, 2n}];
    TableForm[u]  (* A026519 array *)
    Flatten[u] (* A026519 sequence *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    flatten([[T(n,k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Dec 19 2021

Formula

T(n, k) = T(n-1, k-2) + T(n-1, k) if (n mod 2) = 0, otherwise T(n-1, k-2) + T(n-1, k-1) + T(n-1, k), with T(n, 0) = T(n, 2*n) = 1, T(n, 1) = T(n, 2*n-1) = floor((n+1)/2).

Extensions

Updated by Clark Kimberling, Aug 29 2014
Offset changed to 0 by G. C. Greubel, Dec 19 2021

A026584 Irregular triangular array T read by rows: T(i,0) = T(i,2i) = 1 for i >= 0; T(i,1) = T(i,2i-1) = floor(i/2) for i >= 1; and for i >= 2 and j = 2..2i-2, T(i,j) = T(i-1,j-2) + T(i-1,j-1) + T(i-1,j) if i+j is odd, and T(i,j) = T(i-1,j-2) + T(i-1,j) if i+j is even.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 4, 2, 4, 1, 1, 1, 2, 5, 7, 8, 7, 5, 2, 1, 1, 2, 8, 9, 20, 14, 20, 9, 8, 2, 1, 1, 3, 9, 19, 28, 43, 40, 43, 28, 19, 9, 3, 1, 1, 3, 13, 22, 56, 62, 111, 86, 111, 62, 56, 22, 13, 3, 1, 1, 4, 14, 38, 69, 140, 167, 259, 222, 259, 167, 140, 69, 38, 14, 4, 1
Offset: 1

Views

Author

Keywords

Comments

Row sums are in A026597. - Philippe Deléham, Oct 16 2006
T(n, k) = number of integer strings s(0)..s(n) such that s(0) = 0, s(n) = n-k, |s(i)-s(i-1)| <= 1 if s(i-1) odd, |s(i)-s(i-1)| = 1 if s(i-1) is even, for i = 1..n.

Examples

			First 5 rows:
  1
  1  0  1
  1  1  2  1  1
  1  1  4  2  4  1  1
  1  2  5  7  8  7  5  2  1
		

Crossrefs

Programs

  • Mathematica
    z = 12; t[n_, 0] := 1; t[n_, k_] := 1 /; k == 2 n; t[n_, 1] := Floor[n/2]; t[n_, k_] := Floor[n/2] /; k == 2 n - 1; t[n_, k_] := t[n, k] = If[EvenQ[n + k], t[n - 1, k - 2] + t[n - 1, k], t[n - 1, k - 2] + t[n - 1, k - 1] + t[n - 1, k]]; u = Table[t[n, k], {n, 0, z}, {k, 0, 2 n}];
    TableForm[u]   (* A026584 array *)
    v = Flatten[u] (* A026584 sequence *)
  • Sage
    @CachedFunction
    def T(n,k):
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    flatten([[T(n,k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Dec 11 2021

Formula

T(n, k) = T(n-1, k-2) + T(n-1, k) if ( (n+k) mod 2 ) = 0, otherwise T(n-1, k-2) + T(n-1, k-1) + T(n-1, k), where T(n, 0) = T(n, 2*n) = 1, T(n, 1) = T(n, 2*n-1) = floor(n/2).

Extensions

Updated by Clark Kimberling, Aug 29 2014

A026568 Irregular triangular array T read by rows: T(i,0) = T(i,2i) = 1 for i >= 0; T(i,1) = T(i,2i-1) = [ (i+1)/2 ] for i >= 1; and for i >= 2 and 2 <=j <= i - 2, T(i,j) = T(i-1,j-2) + T(i-1,j-1) + T(i-1,j) if i + j is even, T(i,j) = T(i-1,j-2) + T(i-1,j) if i + j is odd.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 4, 5, 4, 2, 1, 1, 2, 7, 7, 13, 7, 7, 2, 1, 1, 3, 8, 16, 20, 27, 20, 16, 8, 3, 1, 1, 3, 12, 19, 44, 43, 67, 43, 44, 19, 12, 3, 1, 1, 4, 13, 34, 56, 106, 111, 153, 111, 106, 56, 34, 13, 4, 1, 1, 4, 18, 38, 103, 140, 273
Offset: 1

Views

Author

Keywords

Comments

T(n, k) = number of strings s(0)..s(n) such that s(0) = 0, s(n) = n - k, |s(i)-s(i-1)| <= 1 if s(i-1) is even, |s(i)-s(i-1)| = 1 if s(i-1) is odd, for 1 <= i <= n.

Examples

			First 5 rows:
  1
  1  1  1
  1  1  3  1  1
  1  2  4  5  4  2  1
  1  2  7  7 13  7  7  2  1
		

Crossrefs

Cf. T(n,n) is A026569.

Programs

  • Mathematica
    z = 12; t[n_, 0] := 1; t[n_, 1] := Floor[(n + 1)/2]; t[n_, k_] := t[n, k] = Which[k == 2 n, 1, k == 2 n - 1, Floor[(n + 1)/2], EvenQ[n + k], t[n - 1, k - 2] + t[n - 1, k - 1] + t[n - 1, k], OddQ[n + k], t[n - 1, k - 2] + t[n - 1, k]]; u = Table[t[n, k], {n, 0, z}, {k, 0, 2 n}];
    TableForm[u] (* A026568 array *)
    Flatten[u]   (* A026568 sequence *)
  • PARI
    T(k,n)=if(n<0||n>2*k,0,if(n==0||n==2*k,1,if(k>0&&(n==1||n==2*k-1),(k+1)\2,T(k-1,n-2)+T(k-1,n)+if((k+n)%2==0,T(k-1,n-1))))) \\ Ralf Stephan

Extensions

Updated by Clark Kimberling, Aug 28 2014
Previous Showing 11-20 of 26 results. Next