A026590
a(n) = T(2*n, n), where T is given by A026584.
Original entry on oeis.org
1, 1, 5, 19, 69, 341, 1203, 6336, 22593, 121483, 438533, 2381512, 8677763, 47419503, 173984792, 954961034, 3522101709, 19397198595, 71831252031, 396646918211, 1473610012405, 8154682794333, 30376120747792, 168394714422722, 628648474795879, 3490216221862041, 13053833414221023, 72566287730964469
Offset: 0
Cf.
A026584,
A026585,
A026587,
A026589,
A026591,
A026592,
A026593,
A026594,
A026595,
A026596,
A026597,
A026598,
A026599,
A027282,
A027283,
A027284,
A027285,
A027286.
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n,n]];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 13 2021 *)
-
@CachedFunction
def T(n, k): # T = A026584
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n//2)
else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
[T(2*n, n) for n in (0..40)] # G. C. Greubel, Dec 13 2021
A026591
a(n) = T(2*n, n-1), where T is given by A026584.
Original entry on oeis.org
1, 2, 9, 38, 140, 701, 2534, 13294, 48369, 258430, 947694, 5114572, 18872399, 102539204, 380143356, 2075658454, 7723000261, 42330184638, 157951859953, 868376395790, 3247811317907, 17899895038348, 67075896452000, 370442993383238, 1390392820937920, 7692166179956366, 28910883325637649, 160184255555687056
Offset: 1
Cf.
A026584,
A026585,
A026587,
A026589,
A026590,
A026592,
A026593,
A026594,
A026595,
A026596,
A026597,
A026598,
A026599,
A027282,
A027283,
A027284,
A027285,
A027286.
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n,n-1]];
Table[a[n], {n, 1, 40}] (* G. C. Greubel, Dec 13 2021 *)
-
@CachedFunction
def T(n, k): # T = A026584
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n//2)
else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
[T(2*n, n-1) for n in (1..40)] # G. C. Greubel, Dec 13 2021
A026592
a(n) = T(2*n, n-2), where T is given by A026584.
Original entry on oeis.org
1, 3, 14, 65, 251, 1288, 4830, 25518, 95388, 510532, 1910821, 10309234, 38656462, 209766714, 787912030, 4294635438, 16155375825, 88371236851, 332859949946, 1826080683788, 6885797551334, 37867515477338, 142929375411104, 787637258527505, 2975423924172735, 16425495119248041, 62096233990615140, 343318987947145114
Offset: 2
Cf.
A026584,
A026585,
A026587,
A026589,
A026590,
A026591,
A026593,
A026594,
A026595,
A026596,
A026597,
A026598,
A026599,
A027282,
A027283,
A027284,
A027285,
A027286.
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n,n-2]];
Table[a[n], {n, 2, 40}] (* G. C. Greubel, Dec 13 2021 *)
-
@CachedFunction
def T(n, k): # T = A026584
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n//2)
else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
[T(2*n, n-2) for n in (2..40)] # G. C. Greubel, Dec 13 2021
A026593
a(n) = T(2*n-1, n-1), where T is given by A026584.
Original entry on oeis.org
1, 1, 8, 22, 121, 406, 2155, 7624, 40717, 147001, 792351, 2892044, 15703156, 57728737, 315180458, 1164727748, 6385672193, 23691834033, 130316812494, 485018155062, 2674846358141, 9980763478121, 55161813337474, 206262229900060, 1142020843590221, 4277853480389546, 23721423518350124, 88991782850212510
Offset: 1
Cf.
A026584,
A026585,
A026587,
A026589,
A026590,
A026591,
A026592,
A026594,
A026595,
A026596,
A026597,
A026598,
A026599,
A027282,
A027283,
A027284,
A027285,
A027286.
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n-1,n-1]];
Table[a[n], {n, 1, 40}] (* G. C. Greubel, Dec 13 2021 *)
-
@CachedFunction
def T(n, k): # T = A026584
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n//2)
else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
[T(2*n-1, n-1) for n in (1..40)] # G. C. Greubel, Dec 13 2021
A026594
a(n) = T(2*n-1, n-2), where T is given by A026584.
Original entry on oeis.org
1, 2, 13, 42, 225, 802, 4235, 15478, 82425, 304156, 1634435, 6064389, 32819839, 122244344, 665162897, 2484851486, 13577768505, 50841782786, 278745377821, 1045763359942, 5749240499515, 21603797860416, 119040956286133, 447922312642212, 2472886893122590, 9315646385012666, 51514464212546865, 194255376492836212
Offset: 2
Cf.
A026584,
A026585,
A026587,
A026589,
A026590,
A026591,
A026592,
A026593,
A026595,
A026596,
A026597,
A026598,
A026599,
A027282,
A027283,
A027284,
A027285,
A027286.
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k]]]]; (*T=A026584*)
Table[T[2*n-1, n-2], {n, 2, 40}] (* G. C. Greubel, Dec 13 2021 *)
-
@CachedFunction
def T(n, k): # T = A026584
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n//2)
else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
[T(2*n-1, n-2) for n in (2..40)] # G. C. Greubel, Dec 13 2021
Original entry on oeis.org
1, 1, 4, 8, 23, 54, 143, 354, 914, 2306, 5907, 15012, 38368, 97804, 249865, 637834, 1629729, 4163398, 10640753, 27196246, 69526562, 177757762, 454541197, 1162403180, 2972953385, 7604223184, 19451741733, 49761433640, 127308417226
Offset: 0
Cf.
A026584,
A026585,
A026587,
A026589,
A026590,
A026591,
A026592,
A026593,
A026594,
A026595,
A026597,
A026598,
A026599,
A027282,
A027283,
A027284,
A027285,
A027286.
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
a[n_]:=a[n]= Sum[T[n,k], {k,0,n}];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 13 2021 *)
-
@CachedFunction
def T(n, k): # T = A026584
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n//2)
else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
@CachedFunction
def A026596(n): return sum( T(n, j) for j in (0..n) )
[A026596(n) for n in (0..40)] # G. C. Greubel, Dec 13 2021
A026598
a(n) = Sum_{i=0..n} Sum_{j=0..i} T(i,j), T given by A026584.
Original entry on oeis.org
1, 2, 6, 14, 37, 91, 234, 588, 1502, 3808, 9715, 24727, 63095, 160899, 410764, 1048598, 2678327, 6841725, 17482478, 44678724, 114205286, 291963048, 746504245, 1908907425, 4881860810, 12486083994, 31937825727, 81699259367
Offset: 0
Cf.
A026584,
A026585,
A026587,
A026589,
A026590,
A026591,
A026592,
A026593,
A026594,
A026595,
A026596,
A026597,
A026599,
A027282,
A027283,
A027284,
A027285,
A027286.
-
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n - 1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]];
a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[i,j], {i,0,n}, {j,0,i}]];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 15 2021 *)
-
@CachedFunction
def T(n, k): # T = A026584
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n//2)
else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
@CachedFunction
def A026598(n): return sum(sum(T(i,j) for j in (0..i)) for i in (0..n))
[A026598(n) for n in (0..40)] # G. C. Greubel, Dec 15 2021
A027282
a(n) = self-convolution of row n of array T given by A026584.
Original entry on oeis.org
1, 2, 8, 40, 222, 1296, 7770, 47324, 291260, 1806220, 11266718, 70609316, 444231564, 2803975860, 17748069294, 112609964308, 716010467122, 4561107325336, 29103104031990, 185973253609716, 1189979068401564, 7623432519587692, 48891854980251090, 313874287333373820
Offset: 0
Cf.
A026584,
A026585,
A026587,
A026589,
A026590,
A026591,
A026592,
A026593,
A026594,
A026595,
A026596,
A026597,
A026598,
A026599,
A027283,
A027284,
A027285,
A027286.
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
a[n_]:= a[n]= Sum[T[n, k]*T[n, 2*n-k], {k,0,2*n}];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 15 2021 *)
-
@CachedFunction
def T(n, k): # T = A026584
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n//2)
else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
@CachedFunction
def A027282(n): return sum(T(n,j)*T(n, 2*n-j) for j in (0..2*n))
[A027282(n) for n in (0..40)] # G. C. Greubel, Dec 15 2021
A027283
a(n) = Sum_{k=0..2*n-1} T(n,k) * T(n,k+1), with T given by A026584.
Original entry on oeis.org
0, 6, 26, 206, 1100, 7314, 42920, 274010, 1677332, 10616070, 66290046, 419754586, 2648500908, 16818685050, 106781976774, 680250643910, 4337083126232, 27709045093274, 177213890858938, 1135003956744310, 7276652578220372, 46702733068082702, 300013046145979184
Offset: 1
Cf.
A026584,
A026585,
A026587,
A026589,
A026590,
A026591,
A026592,
A026593,
A026594,
A026595,
A026596,
A026597,
A026598,
A026599,
A027282,
A027284,
A027285,
A027286.
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
a[n_]:= a[n]= Sum[T[n, k]*T[n, k+1], {k, 0, 2*n-1}];
Table[a[n], {n, 1, 40}] (* G. C. Greubel, Dec 15 2021 *)
-
@CachedFunction
def T(n, k): # T = A026584
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n//2)
else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
@CachedFunction
def A027283(n): return sum(T(n,j)*T(n, j+1) for j in (0..2*n-1))
[A027283(n) for n in (1..40)] # G. C. Greubel, Dec 15 2021
A027284
a(n) = Sum_{k=0..2*n-2} T(n,k) * T(n,k+2), with T given by A026584.
Original entry on oeis.org
5, 28, 167, 1024, 6359, 39759, 249699, 1573524, 9943905, 62994733, 399936573, 2543992514, 16210331727, 103453402718, 661164765879, 4230874777682, 27105456280491, 173838468040879, 1115987495619427, 7170725839251598, 46113396476943241, 296773029762031990
Offset: 2
Cf.
A026584,
A026585,
A026587,
A026589,
A026590,
A026591,
A026592,
A026593,
A026594,
A026595,
A026596,
A026597,
A026598,
A026599,
A027282,
A027283,
A027285,
A027286.
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
a[n_]:= a[n]= Sum[T[n, k]*T[n, k+2], {k, 0, 2*n-2}];
Table[a[n], {n, 2, 40}] (* G. C. Greubel, Dec 15 2021 *)
-
@CachedFunction
def T(n, k): # T = A026584
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n//2)
else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
@CachedFunction
def A027284(n): return sum(T(n,j)*T(n, j+2) for j in (0..2*n-2))
[A027284(n) for n in (2..40)] # G. C. Greubel, Dec 15 2021
Comments