A026956 Self-convolution of array T given by A026615.
1, 2, 11, 52, 200, 742, 2752, 10278, 38670, 146426, 557408, 2131318, 8179646, 31491202, 121568150, 470404274, 1823968074, 7085220834, 27567196704, 107414120214, 419080195374, 1636990646274, 6401210885934, 25055584929954, 98160790785714, 384885441746202, 1510279309724502
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
[n le 1 select n+1 else Catalan(n-2)*(49*n^2-105*n+48)/n - 6: n in [0..40]]; // G. C. Greubel, Jun 17 2024
-
Mathematica
Table[If[n==0, 1, CatalanNumber[n-2]*(49*n^2-105*n+48)/n -6], {n,0,40}] (* G. C. Greubel, Jun 17 2024 *)
-
SageMath
[1,2]+[catalan_number(n-2)*(49*n^2-105*n+48)/n -6 for n in range(2,41)] # G. C. Greubel, Jun 17 2024
Formula
From G. C. Greubel, Jun 17 2024: (Start)
a(n) = A000108(n-2)*(49*n^2 - 105*n + 48)/n - 6, for n >= 1, with a(0) = 1.
G.f.: (4 - 8*x + 5*x^2 - x^3 - (3 - x + 4*x^2)*sqrt(1-4*x))/((1-x)*sqrt(1-4*x)).
E.g.f.: (1/6)*( 18 + 24*x - 36*exp(x) + 4*exp(2*x)*(6 - 6*x + x^2) * BesselI(0, 2*x) + x*exp(2*x)*(23 - 4*x)*BesselI(1, 2*x) ). (End)
Extensions
More terms from Sean A. Irvine, Oct 20 2019