cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A125250 Square array, read by antidiagonals, where A(1,1) = A(2,2) = 1, A(1,2) = A(2,1) = 0, A(n,k) = 0 if n < 1 or k < 1, otherwise A(n,k) = A(n-2,k-2) + A(n-1,k-2) + A(n-2,k-1) + A(n-1,k-1).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 5, 1, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 3, 11, 3, 0, 0, 0, 0, 0, 0, 1, 13, 13, 1, 0, 0, 0, 0, 0, 0, 0, 9, 26, 9, 0, 0, 0, 0, 0, 0, 0, 0, 4, 32, 32, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1, 26, 63, 26, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 80, 80, 14, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gerald McGarvey, Jan 15 2007

Keywords

Comments

It appears that the main diagonal (1,1,2,5,11,...) is A051286 (Whitney number of level n of the lattice of the ideals of the fence of size 2 n) that the diagonals (0,1,2,5,13,...) adjacent to the main diagonal are A110320 (Number of blocks in all RNA secondary structures with n nodes) and that the n-th antidiagonal sum = A094686(n-1) (a Fibonacci convolution). The n-th row sum = A002605(n).

Examples

			Array starts as:
1 0 0 0  0  0  0 ...
0 1 1 0  0  0  0 ...
0 1 2 2  1  0  0 ...
0 0 2 5  5  3  1   0 ...
0 0 1 5 11 13  9   4   1   0...
0 0 0 3 13 26 32  26  14   5   1  0 ...
0 0 0 1  9 32 63  80  71  45  20  6  1 0 ...
0 0 0 0  4 26 80 153 201 191 135 71 27 7 1 0 ...
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[i, n-i] Binomial[i, k-i], {i, Floor[(n+1)/2], k}];
    Table[T[n-k, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 12 2019 *)
  • PARI
    A=matrix(22,22);A[1,1]=1;A[2,2]=1;A[2,1]=0;A[1,2]=0;A[3,2]=1;A[2,3]=1; for(n=3,22,for(k=3,22,A[n,k]=A[n-2,k-2]+A[n-1,k-2]+A[n-2,k-1]+A[n-1,k-1])); for(n=1,22,for(i=1,n,print1(A[n-i+1,i],", ")))

Formula

A(1,1) = A(2,2) = 1, A(1,2) = A(2,1) = 0, A(n,k) = 0 if n < 1 or k < 1, otherwise A(n,k) = A(n-2,k-2) + A(n-1,k-2) + A(n-2,k-1) + A(n-1,k-1).
From Peter Bala, Nov 07 2017: (Start)
T(n,k) = Sum_{i = floor((n+1)/2)..k} binomial(i,n-i)* binomial(i,k-i).
Square array = A026729 * transpose(A026729), where A026729 is viewed as a lower unit triangular array. Omitting the first row and column of square array = A030528 * transpose(A030528).
O.g.f. 1/(1 - t*(1 + t)*x - t*(1 + t)*x^2) = 1 + (t + t^2)*x + (t + 2*t^2 + 2*t^3 + t^4)*x^2 + .... Cf. A109466 with o.g.f. 1/(1 - t*x - t*x^2).
The n-th row polynomial R(n,t) satisfies R(n,t) = R(n,-1 - t).
R(n,t) = (-1)^n*sqrt(-t*(1 + t))^n*U(n, 1/2*sqrt(-t*(1 + t))), where U(n,x) denotes the n-th Chebyshev polynomial of the second kind.
The sequence of row polynomials R(n,t) is a divisibility sequence of polynomials, that is, if m divides n then R(m,t) divides R(n,t) in the polynomial ring Z[t].
R(n,1) = A002605; R(n,2) = A057089. (End)

A320508 T(n,k) = binomial(n - k - 1, k), 0 <= k < n, and T(n,n) = (-1)^n, triangle read by rows.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 0, -1, 1, 2, 0, 0, 1, 1, 3, 1, 0, 0, -1, 1, 4, 3, 0, 0, 0, 1, 1, 5, 6, 1, 0, 0, 0, -1, 1, 6, 10, 4, 0, 0, 0, 0, 1, 1, 7, 15, 10, 1, 0, 0, 0, 0, -1, 1, 8, 21, 20, 5, 0, 0, 0, 0, 0, 1, 1, 9, 28, 35, 15, 1, 0, 0, 0, 0, 0, -1, 1, 10, 36
Offset: 0

Views

Author

Keywords

Comments

Differs from A164925 in signs.
The n-th row consists of the coefficients in the expansion of (-x)^n + (((1 + sqrt(1 + 4*x))/2)^n -((1 - sqrt(1 + 4*x))/2)^n )/sqrt(1 + 4*x).
The coefficients in the expansion of Sum_{j=0..floor((n - 1)/2)} T(n,k)*x^(n - 2*j - 1) yield the n-th row in A168561, the coefficients of the n-th Fibonacci polynomial.
Row n sums up to Fibonacci(n) + (-1)^n (A008346).

Examples

			Triangle begins:
    1;
    1, -1;
    1,  0,  1;
    1,  1,  0, -1;
    1,  2,  0,  0,  1;
    1,  3,  1,  0,  0, -1;
    1,  4,  3,  0,  0,  0, 1;
    1,  5,  6,  1,  0,  0, 0, -1;
    1,  6, 10,  4,  0,  0, 0,  0, 1;
    1,  7, 15, 10,  1,  0, 0,  0, 0, -1;
    1,  8, 21, 20,  5,  0, 0,  0, 0,  0, 1;
    1,  9, 28, 35, 15,  1, 0,  0, 0,  0, 0, -1;
    ...
		

Crossrefs

Programs

  • Mathematica
    Table[Table[Binomial[n - k - 1, k], {k, 0, n}], {n, 0, 12}]//Flatten
  • Maxima
    create_list(binomial(n - k - 1, k), n, 0, 12, k, 0, n);

Formula

G.f.: 1/((1 + x*y)*(1 - y - x*y^2)).
E.g.f.: exp(-x*y) + (exp(y*(1 + sqrt(1 + 4*x))/2) - exp(y*(1 - sqrt(1 + 4*x))/2))/sqrt(1 + 4*x).
T(n,1) = A023443(n).

A099092 Riordan array (1,2+4x).

Original entry on oeis.org

1, 0, 2, 0, 4, 4, 0, 0, 16, 8, 0, 0, 16, 48, 16, 0, 0, 0, 96, 128, 32, 0, 0, 0, 64, 384, 320, 64, 0, 0, 0, 0, 512, 1280, 768, 128, 0, 0, 0, 0, 256, 2560, 3840, 1792, 256, 0, 0, 0, 0, 0, 2560, 10240, 10752, 4096, 512, 0, 0, 0, 0, 0, 1024, 15360, 35840, 28672, 9216, 1024, 0, 0, 0
Offset: 0

Views

Author

Paul Barry, Sep 25 2004

Keywords

Comments

Row sums are A063727. Diagonal sums are A052907.
The Riordan array (1, s+tx) defines T(n,k) = binomial(k,n-k)*s^k*(t/s)^(n-k). The row sums satisfy a(n) = s*a(n-1) + t*a(n-2) and the diagonal sums satisfy a(n) = s*a(n-2) + t*a(n-3).

Examples

			Rows begin
  {1},
  {0,  2},
  {0,  4,  4},
  {0,  0, 16,  8},
  {0,  0, 16, 48, 16}, ...
		

Crossrefs

Formula

Number triangle T(n,k) = binomial(k, n-k)*2^n; columns have g.f. (2x+4x^2)^k.
T(n,k) = A113953(n,k)*2^k = A026729(n,k)*2^n. - Philippe Deléham, Dec 11 2008

A104731 Triangle T(n,k) = sum_{j=k..n} (j+1)*binomial(k,j-k), read by rows, 0<=k<=n.

Original entry on oeis.org

1, 1, 2, 1, 5, 3, 1, 5, 11, 4, 1, 5, 16, 19, 5, 1, 5, 16, 37, 29, 6, 1, 5, 16, 44, 71, 41, 7, 1, 5, 16, 44, 103, 121, 55, 8, 1, 5, 16, 44, 112, 211, 190, 71, 9, 1, 5, 16, 44, 112, 261, 390, 281, 89, 10, 1, 5, 16, 44, 112, 272, 555, 666, 397, 109, 11
Offset: 0

Views

Author

Gary W. Adamson, Mar 20 2005

Keywords

Examples

			The first few rows of the triangle are:
1;
1, 2;
1, 5, 3;
1, 5, 11, 4
1, 5, 16, 19, 5;
1, 5, 16, 37, 29, 6;
...
		

Crossrefs

Cf. A014286 (row sums), A045925, A026729.

Formula

Product of the triangles A(n,k) = k+1 and B = binomial(k,n-k) = [1; 0, 1; 0, 1, 1; 0, 0, 2, 1; 0, 0, 1, 3, 1;...], the triangular view of A026729.

A177040 Irregular triangle t(n,m) = binomial(m+1,n-m) read by rows floor((n+1)/2) <= m <= n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 3, 4, 1, 6, 5, 1, 4, 10, 6, 1, 10, 15, 7, 1, 5, 20, 21, 8, 1, 15, 35, 28, 9, 1, 6, 35, 56, 36, 10, 1, 21, 70, 84, 45, 11, 1, 7, 56, 126, 120, 55, 12, 1, 28, 126, 210, 165, 66, 13, 1, 8, 84, 252, 330, 220, 78, 14, 1, 36, 210, 462, 495, 286, 91, 15, 1
Offset: 0

Views

Author

Roger L. Bagula, May 01 2010

Keywords

Comments

Row sums are in A052952.
Contains the right half of each row of A030528. - R. J. Mathar, May 19 2013

Examples

			1;
1;
2, 1;
3, 1;
3, 4, 1;
6, 5, 1;
4, 10, 6, 1;
10, 15, 7, 1;
5, 20, 21, 8, 1;
15, 35, 28, 9, 1;
6, 35, 56, 36, 10, 1;
21, 70, 84, 45, 11, 1;
7, 56, 126, 120, 55, 12, 1;
28, 126, 210, 165, 66, 13, 1;
8, 84, 252, 330, 220, 78, 14, 1;
36, 210, 462, 495, 286, 91, 15, 1;
		

Crossrefs

Cf. A180987 (read diagonally downwards), A098925, A026729, A085478, A165253

Programs

  • Mathematica
    t[n_, m_] := Binomial[m + 1, n - m];
    Table[Table[t[n, m], {m, Floor[(n + 1)/2], n}], {n, 0, 15}];
    Flatten[%]
  • PARI
    T(m,n)=binomial(n+1,m-n) \\ Charles R Greathouse IV, May 19 2013
Previous Showing 31-35 of 35 results.