cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A026762 a(n) = T(2n-1,n-1), T given by A026758. Also T(2n+1,n+1), T given by A026747.

Original entry on oeis.org

1, 4, 16, 66, 279, 1201, 5242, 23133, 103015, 462269, 2088146, 9487405, 43328580, 198798447, 915950385, 4236322720, 19661850045, 91549502656, 427539667095, 2002120576312, 9399659155395, 44234927105888, 208631813215116
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(n,k) option remember;
       if n<0 then 0;
       elif k=0 or k = n then 1;
       elif type(n,'odd') and k <= (n-1)/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc;
    seq(T(2*n-1,n-1), n=1..30); # G. C. Greubel, Oct 31 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[T[2n-1, n-1], {n, 0, 30}] (* G. C. Greubel, Oct 31 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (n<0): return 0
        elif (k==0 or k==n): return 1
        elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [T(2*n-1, n-1) for n in (1..30)] # G. C. Greubel, Oct 31 2019

A026859 T(2n,n-4), T given by A026747.

Original entry on oeis.org

1, 15, 141, 1070, 7187, 44673, 263431, 1496218, 8266100, 44718596, 238015318, 1250656153, 6504202391, 33543967700, 171810543570, 875006817465, 4435130657170, 22390449598704, 112654298838120, 565172299571352
Offset: 4

Views

Author

Keywords

A026860 T(2n,n-3), T given by A026747.

Original entry on oeis.org

1, 12, 95, 629, 3781, 21433, 116928, 621317, 3239925, 16662600, 84804868, 428176176, 2148404051, 10726889402, 53349600116, 264499086453, 1308025259637, 6455291067020, 31804649415803, 156486128169860, 769098411417361
Offset: 3

Views

Author

Keywords

A026861 T(2n,n+1), T given by A026747.

Original entry on oeis.org

1, 5, 22, 95, 411, 1790, 7855, 34725, 154573, 692450, 3120206, 14135555, 64356345, 294341325, 1351889910, 6233399525, 28845511125, 133933280000, 623811120960, 2913924782375, 13648296620445, 64087737455725, 301644762913977
Offset: 1

Views

Author

Keywords

Comments

a(n+1) = p(n+1) where p(x) is the unique degree-n polynomial such that p(k) = A002212(k+1) for k=0,1,...,n. - Michael Somos, Oct 07 2003
Number of skew Dyck paths of semilength n+1 containing at least one left step. - David Scambler, Jun 17 2013

Crossrefs

Programs

  • PARI
    a(n)=if(n<1,0,subst(polinterpolate(Vec((1-3*x-sqrt(1-6*x+5*x^2+x^2*O(x^n)))/2)),x,n+1))

Formula

a(n) = A002212(n+1) - A000108(n+1). - David Scambler, Jun 17 2013

A026862 T(2n,n+2), T given by A026747.

Original entry on oeis.org

1, 7, 37, 178, 823, 3737, 16833, 75608, 339610, 1527944, 6892210, 31186533, 141598200, 645186895, 2950261555, 13538266219, 62338173865, 287993085103, 1334712682675, 6204513729392, 28925212243136, 135216169757852, 633722949713612
Offset: 2

Views

Author

Keywords

Crossrefs

Cf. A026747.

A026863 T(2n,n+3), T given by A026747.

Original entry on oeis.org

1, 9, 56, 301, 1504, 7217, 33821, 156274, 716116, 3266558, 14868789, 67649170, 307997855, 1404343584, 6416130302, 29383457373, 134915391509, 621163581667, 2867888163907, 13278007815855, 61645847283931, 286977785803129
Offset: 3

Views

Author

Keywords

A026864 T(2n,n+4), T given by A026747.

Original entry on oeis.org

1, 11, 79, 472, 2554, 13024, 63958, 306382, 1443463, 6725059, 31101315, 143160979, 657181579, 3012930550, 13810302898, 63339713546, 290848317898, 1337717758649, 6164619409085, 28469921477415, 131784947615381, 611477036684719
Offset: 4

Views

Author

Keywords

A026866 a(n) = T(2n+1,n+2), T given by A026747.

Original entry on oeis.org

1, 6, 29, 132, 589, 2613, 11592, 51558, 230181, 1032060, 4648150, 21027765, 95542878, 435939525, 1997076805, 9183661080, 42383777344, 196271453865, 911804206063, 4248637465050, 19852810349837, 93012949698861, 436860932671829
Offset: 1

Views

Author

Keywords

Comments

This appears to obey a hypergeometric 8-term recurrence with 4th-order polynomial coefficients. - R. J. Mathar, Nov 10 2013

Crossrefs

Cf. A026747.

A026867 T(2n+1,n+3), T given by A026747.

Original entry on oeis.org

1, 8, 46, 234, 1124, 5241, 24050, 109429, 495884, 2244060, 10158768, 46055322, 209247370, 953184750, 4354605139, 19954396521, 91721631238, 422908476612, 1955876264342, 9072401893299, 42203220058991, 196862017041783, 920700735516741
Offset: 2

Views

Author

Keywords

A026868 T(2n+1,n+4), T given by A026747.

Original entry on oeis.org

1, 10, 67, 380, 1976, 9771, 46845, 220232, 1022498, 4710021, 21593848, 98750485, 451158834, 2061525163, 9429060852, 43193760271, 198255105055, 912011899565, 4205605922556, 19442627224940, 90115768761346, 418762733418510
Offset: 3

Views

Author

Keywords

Crossrefs

Cf. A026747.
Previous Showing 11-20 of 29 results. Next