cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A333486 Length of the n-th reversed integer partition in graded reverse-lexicographic order. Partition lengths of A228531.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 1, 2, 2, 3, 4, 1, 2, 2, 3, 3, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 4, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 5, 6, 7, 1, 2, 2, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 6, 7, 8, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 7, 8, 9
Offset: 0

Views

Author

Gus Wiseman, May 23 2020

Keywords

Examples

			Triangle begins:
  0
  1
  1 2
  1 2 3
  1 2 2 3 4
  1 2 2 3 3 4 5
  1 2 2 3 2 3 3 4 4 5 6
  1 2 2 3 2 3 3 4 3 4 4 5 5 6 7
  1 2 2 2 3 3 4 2 3 3 4 3 4 4 5 4 5 5 6 6 7 8
		

Crossrefs

Row lengths are A000041.
The generalization to compositions is A000120.
Row sums are A006128.
The same partition has sum A036042.
The length-sensitive version (sum/length/revlex) is A036043.
The colexicographic version (sum/colex) is A049085.
The same partition has minimum A182715.
The lexicographic version (sum/lex) is A193173.
The tetrangle of these partitions is A228531.
The version for non-reversed partitions is A238966.
The same partition has Heinz number A334436.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036.
Partitions in lexicographic order (sum/lex) are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Partitions in opposite Abramowitz-Stegun order (sum/length/revlex) are A334439.

Programs

  • Mathematica
    revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]];
    Table[Length/@Sort[Reverse/@IntegerPartitions[n],revlexsort],{n,0,8}]

A194546 Triangle read by rows: T(n,k) is the largest part of the k-th partition of n, with partitions in colexicographic order.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 3, 2, 4, 1, 2, 3, 2, 4, 3, 5, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 3, 5, 4, 7, 3, 6, 5, 9
Offset: 1

Views

Author

Omar E. Pol, Dec 10 2011

Keywords

Comments

Row n lists the first A000041(n) terms of A141285.
The representation of the partitions (for fixed n) is as (weakly) decreasing lists of parts, the order between individual partitions (for the same n) is co-lexicographic, see example. - Joerg Arndt, Sep 13 2013

Examples

			For n = 5 the partitions of 5 in colexicographic order are:
  1+1+1+1+1
  2+1+1+1
  3+1+1
  2+2+1
  4+1
  3+2
  5
so the fifth row is the largest in each partition: 1,2,3,2,4,3,5
Triangle begins:
  1;
  1,2;
  1,2,3;
  1,2,3,2,4;
  1,2,3,2,4,3,5;
  1,2,3,2,4,3,5,2,4,3,6;
  1,2,3,2,4,3,5,2,4,3,6,3,5,4,7;
  1,2,3,2,4,3,5,2,4,3,6,3,5,4,7,2,4,3,6,5,4,8;
...
		

Crossrefs

The sum of row n is A006128(n).
Row lengths are A000041.
Let y be the n-th integer partition in colexicographic order (A211992):
- The maximum of y is a(n).
- The length of y is A193173(n).
- The minimum of y is A196931(n).
- The Heinz number of y is A334437(n).
Lexicographically ordered reversed partitions are A026791.
Reverse-colexicographically ordered partitions are A026792.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036.
Reverse-lexicographically ordered partitions are A080577.
Lexicographically ordered partitions are A193073.

Programs

  • Mathematica
    colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]];
    Max/@Join@@Table[Sort[IntegerPartitions[n],colex],{n,8}] (* Gus Wiseman, May 31 2020 *)

Formula

a(n) = A061395(A334437(n)). - Gus Wiseman, May 31 2020

Extensions

Definition corrected by Omar E. Pol, Sep 12 2013

A211983 A list of ordered partitions of the positive integers in which the shells of each integer are assembled by their tails.

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 4, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 2, 5, 6, 3, 3, 4, 2, 2, 2, 2, 4, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 2, 1, 5, 1, 6, 1, 3, 3, 1, 4, 2, 1, 2, 2, 2, 1, 4, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 2, 1, 1, 5, 1, 1, 3, 2, 2, 5, 2, 4, 3, 7
Offset: 1

Views

Author

Omar E. Pol, Aug 19 2012

Keywords

Comments

The order of the partitions of the odd integers is the same as A211999. The order of the partitions of the even integers is the same as A211989.

Examples

			A table of partitions.
--------------------------------------------
.              Expanded       Geometric
Partitions     arrangement    model
--------------------------------------------
1;             1;             |*|
--------------------------------------------
2;             . 2;           |* *|
1,1;           1,1;           |o|*|
--------------------------------------------
2,1;           . 2,1;         |o o|*|
1,1,1;         1,1,1;         |o|o|*|
3;             . . 3;         |* * *|
--------------------------------------------
4;             . . . 4;       |* * * *|
2,2;           . 2,. 2;       |* *|* *|
2,1,1;         . 2,1,1;       |o o|o|*|
1,1,1,1;       1,1,1,1;       |o|o|o|*|
3,1;           . . 3,1;       |o o o|*|
--------------------------------------------
4,1;           . . . 4,1;     |o o o o|*|
2,2,1;         . 2,. 2,1;     |o o|o o|*|
2,1,1,1;       . 2,1,1,1;     |o o|o|o|*|
1,1,1,1,1;     1,1,1,1,1;     |o|o|o|o|*|
3,1,1;         . . 3,1,1;     |o o o|o|*|
3,2;           . . 3,. 2;     |* * *|* *|
5;             . . . . 5;     |* * * * *|
--------------------------------------------
6;             . . . . . 6;   |* * * * * *|
3,3;           . . 3,. . 3;   |* * *|* * *|
4,2;           . . . 4,. 2;   |* * * *|* *|
2,2,2;         . 2,. 2,. 2;   |* *|* *|* *|
4,1,1;         . . . 4,1,1;   |o o o o|o|*|
2,2,1,1;       . 2,. 2,1,1;   |o o|o o|o|*|
2,1,1,1,1;     . 2,1,1,1,1;   |o o|o|o|o|*|
1,1,1,1,1,1;   1,1,1,1,1,1;   |o|o|o|o|o|*|
3,1,1,1;       . . 3,1,1,1;   |o o o|o|o|*|
3,2,1;         . . 3,. 2,1;   |o o o|o o|*|
5,1;           . . . . 5,1;   |o o o o o|*|
--------------------------------------------
Note that * is a unitary element of every part of the last section of j.
		

Crossrefs

Rows sums give A036042, n>=1.
Other versions are A211984, A211989, A211999. See also A026792, A211992-A211994. Spiral arrangements are A211985-A211988, A211995-A211998.

A211984 A list of ordered partitions of the positive integers in which the shells of each integer are assembled by their tails.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 4, 5, 3, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 4, 1, 5, 1, 3, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 2, 2, 2, 4, 2, 3, 3, 6, 7, 4, 3, 5, 2, 3, 2, 2, 5, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 3, 2, 1, 1, 5, 1, 1, 4, 2, 1, 6, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 19 2012

Keywords

Comments

The order of the partitions of the odd integers is the same as A211989. The order of the partitions of the even integers is the same as A211999.

Examples

			A table of partitions.
--------------------------------------------
.              Expanded       Geometric
Partitions     arrangement    model
--------------------------------------------
1;             1;             |*|
--------------------------------------------
1,1;           1,1;           |o|*|
2;             . 2;           |* *|
--------------------------------------------
3;             . . 3;         |* * *|
1,1,1;         1,1,1;         |o|o|*|
2,1;           . 2,1;         |o o|*|
--------------------------------------------
3,1;           . . 3,1;       |o o o|*|
1,1,1,1;       1,1,1,1;       |o|o|o|*|
2,1,1;         . 2,1,1;       |o o|o|*|
2,2;           . 2,. 2;       |* *|* *|
4;             . . . 4;       |* * * *|
--------------------------------------------
5;             . . . . 5;     |* * * * *|
3,2;           . . 3,. 2;     |* * *|* *|
3,1,1;         . . 3,1,1;     |o o o|o|*|
1,1,1,1,1;     1,1,1,1,1;     |o|o|o|o|*|
2,1,1,1;       . 2,1,1,1;     |o o|o|o|*|
2,2,1;         . 2,. 2,1;     |o o|o o|*|
4,1;           . . . 4,1;     |o o o o|*|
--------------------------------------------
5,1;           . . . . 5,1;   |o o o o o|*|
3,2,1;         . . 3,. 2,1;   |o o o|o o|*|
3,1,1,1;       . . 3,1,1,1;   |o o o|o|o|*|
1,1,1,1,1;     1,1,1,1,1,1;   |o|o|o|o|o|*|
2,1,1,1,1;     . 2,1,1,1,1;   |o o|o|o|o|*|
2,2,1,1;       . 2,. 2,1,1;   |o o|o o|o|*|
4,1,1;         . . . 4,1,1;   |o o o o|o|*|
2,2,2;         . 2,. 2,1,1;   |* *|* *|* *|
4,2;           . . . 4,1,1;   |* * * *|* *|
3,3;           . . 3,. . 3;   |* * *|* * *|
6;             . . . . . 6;   |* * * * * *|
--------------------------------------------
Note that * is a unitary element of every part of the last section of j.
		

Crossrefs

Rows sums give A036042, n>=1.
Other versions are A211983, A211989, A211999. See also A026792, A211992-A211994. Spiral arrangements are A211985-A211988, A211995-A211998.

A211985 A list of certain compositions which arise from the ordered partitions of the positive integers in which the shells of each integer are arranged as a spiral.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 5, 2, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 4, 6, 3, 3, 4, 2, 2, 2, 2, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 3, 1, 5, 1, 7, 3, 4, 2, 5, 2, 2, 3, 1, 5, 1, 1, 2, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 1, 4, 2, 1, 3, 3, 1, 6
Offset: 1

Views

Author

Omar E. Pol, Aug 19 2012

Keywords

Comments

In order to construct this sequence we use the following rules:
- Consider the partitions of positive integers.
- For each positive integer its shells must be arranged in a spiral.
- The sequence lists one spiral for each positive integer.
- If the integer j is odd then we use the same spiral of A211995.
- If the integer j is even then the first composition listed of each spiral is j.

Examples

			--------------------------------------------
.               Expanded        Geometric
Compositions   arrangement        model
--------------------------------------------
1;                 1;             |*|
--------------------------------------------
2;                 . 2;           |* *|
1,1;               1,1;           |o|*|
--------------------------------------------
3;               3 . .;         |* * *|
1,1,1;           1,1,1;         |*|o|o|
1,2;             1,. 2;         |*|o o|
--------------------------------------------
4,;              . . . 4;       |* * * *|
2,2;             . 2,. 2;       |* *|* *|
1,2,1;           1,. 2,1;       |o|o o|*|
1,1,1,1,;        1,1,1,1;       |o|o|o|*|
3,1;             3 . .,1;       |o o o|*|
--------------------------------------------
5;             5 . . . .;     |* * * * *|
2,3;           2 .,3 . .;     |* *|* * *|
1,3,1;         1,3 . .,1;     |*|o o o|o|
1,1,1,1,1;     1,1,1,1,1;     |*|o|o|o|o|
1,1,2,1;       1,1,. 2,1;     |*|o|o o|o|
1,2,2;         1,. 2,. 2;     |*|o o|o o|
1,4;           1,. . . 4;     |*|o o o o|
--------------------------------------------
6;             . . . . . 6;   |* * * * * *|
3,3;           . . 3,. . 3;   |* * *|* * *|
4,2;           . . . 4,. 2;   |* * * *|* *|
2,2,2;         . 2,. 2,. 2;   |* *|* *|* *|
1,4,1;         1,. . . 4,1;   |o|o o o o|*|
1,2,2,1;       1,. 2,. 2,1;   |o|o o|o o|*|
1,1,2,1,1;     1,1,. 2,1,1;   |o|o|o o|o|*|
1,1,1,1,1,1;   1,1,1,1,1,1;   |o|o|o|o|o|*|
1,3,1,1;       1,3 . .,1,1;   |o|o o o|o|*|
2,3,1;         2 .,3 . .,1;   |o o|o o o|*|
5,1;           5 . . . .,1;   |o o o o o|*|
--------------------------------------------
Note that * is a unitary element of every part of the last section of j.
		

Crossrefs

Rows sums give A036042, n>=1.
Mirror of A211986. Other spiral versions are A211987, A211988, A211995-A211998. See also A026792, A211983, A211984, A211989, A211992, A211993, A211994, A211999.

A211989 A list of ordered partitions of the positive integers in which the shells of each integer are assembled by their tails.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 5, 3, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 4, 1, 6, 3, 3, 4, 2, 2, 2, 2, 4, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 2, 1, 5, 1, 7, 4, 3, 5, 2, 3, 2, 2, 5, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 2, 2, 2, 1, 4, 2, 1, 3, 3, 1, 6, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2012

Keywords

Comments

The sequence lists the partitions of all positive integers. Each row of the irregular array is a partition of j.
At stage 1, we start with 1.
At stage j > 1, we write the partitions of j using the following rules:
First, we write the partitions of j that do not contain 1 as a part, in reverse-lexicographic order, starting with the partition that contains the part of size j.
Second, we copy from this array the partitions of j-1 in descending order, as a mirror image, starting with the partition that contains the part of size j-2 together with the part of size 1. At the end of each new row, we added a part of size 1.

Examples

			A table of partitions.
--------------------------------------------
.              Expanded       Geometric
Partitions     arrangement    model
--------------------------------------------
1;             1;             |*|
--------------------------------------------
2;             . 2;           |* *|
1,1;           1,1;           |o|*|
--------------------------------------------
3;             . . 3;         |* * *|
1,1,1;         1,1,1;         |o|o|*|
2,1;           . 2,1;         |o o|*|
--------------------------------------------
4;             . . . 4;       |* * * *|
2,2;           . 2,. 2;       |* *|* *|
2,1,1;         . 2,1,1;       |o o|o|*|
1,1,1,1;       1,1,1,1;       |o|o|o|*|
3,1;           . . 3,1;       |o o o|*|
--------------------------------------------
5;             . . . . 5;     |* * * * *|
3,2;           . . 3,. 2;     |* * *|* *|
3,1,1;         . . 3,1,1;     |o o o|o|*|
1,1,1,1,1;     1,1,1,1,1;     |o|o|o|o|*|
2,1,1,1;       . 2,1,1,1;     |o o|o|o|*|
2,2,1;         . 2,. 2,1;     |o o|o o|*|
4,1;           . . . 4,1;     |o o o o|*|
--------------------------------------------
6;             . . . . . 6;   |* * * * * *|
3,3;           . . 3,. . 3;   |* * *|* * *|
4,2;           . . . 4,. 2;   |* * * *|* *|
2,2,2;         . 2,. 2,. 2;   |* *|* *|* *|
4,1,1;         . . . 4,1,1;   |o o o o|o|*|
2,2,1,1;       . 2,. 2,1,1;   |o o|o o|o|*|
2,1,1,1,1;     . 2,1,1,1,1;   |o o|o|o|o|*|
1,1,1,1,1,1;   1,1,1,1,1,1;   |o|o|o|o|o|*|
3,1,1,1;       . . 3,1,1,1;   |o o o|o|o|*|
3,2,1;         . . 3,. 2,1;   |o o o|o o|*|
5,1;           . . . . 5,1;   |o o o o o|*|
--------------------------------------------
Note that * is a unitary element of every part of the last section of j.
		

Crossrefs

Rows sums give A036042, n>=1.
Other versions are A211983, A211984, A211999. See also A026792, A211992-A211994. Spiral arrangements are A211985-A211988, A211995-A211998.

A211994 A list of ordered partitions of the positive integers.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 2, 4, 5, 3, 2, 4, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 3, 2, 1, 5, 1, 2, 2, 2, 4, 2, 3, 3, 6, 7, 4, 3, 5, 2, 3, 2, 2, 6, 1, 3, 3, 1, 4, 2, 1, 2, 2, 2, 1, 5, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2012

Keywords

Comments

The order of the partitions of the odd integers is the same as A026792. The order of the partitions of the even integers is the same as A211992.

Examples

			A table of partitions.
--------------------------------------------
.              Expanded       Geometric
Partitions     arrangement    model
--------------------------------------------
1;             1;             |*|
--------------------------------------------
1,1;           1,1;           |o|*|
2;             . 2;           |* *|
--------------------------------------------
3;             . . 3;         |* * *|
2,1;           . 2,1;         |o o|*|
1,1,1;         1,1,1;         |o|o|*|
--------------------------------------------
1,1,1,1;       1,1,1,1;       |o|o|o|*|
2,1,1;         . 2,1,1;       |o o|o|*|
3,1;           . . 3,1;       |o o o|*|
2,2;           . 2,. 2;       |* *|* *|
4;             . . . 4;       |* * * *|
--------------------------------------------
5;             . . . . 5;     |* * * * *|
3,2;           . . 3,. 2;     |* * *|* *|
4,1;           . . . 4,1;     |o o o o|*|
2,2,1;         . 2,. 2,1;     |o o|o o|*|
3,1,1;         . . 3,1,1;     |o o o|o|*|
2,1,1,1;       . 2,1,1,1;     |o o|o|o|*|
1,1,1,1,1;     1,1,1,1,1;     |o|o|o|o|*|
--------------------------------------------
1,1,1,1,1,1;   1,1,1,1,1,1;   |o|o|o|o|o|*|
2,1,1,1,1;     . 2,1,1,1,1;   |o o|o|o|o|*|
3,1,1,1;       . . 3,1,1,1;   |o o o|o|o|*|
2,2,1,1;       . 2,. 2,1,1;   |o o|o o|o|*|
4,1,1;         . . . 4,1,1;   |o o o o|o|*|
3,2,1;         . . 3,. 2,1;   |o o o|o o|*|
5,1;           . . . . 5,1;   |o o o o o|*|
2,2,2;         . 2,. 2,. 2;   |* *|* *|* *|
4,2;           . . . 4,. 2;   |* * * *|* *|
3,3;           . . 3,. . 3;   |* * *|* * *|
6;             . . . . . 6;   |* * * * * *|
--------------------------------------------
Note that * is a unitary element of every part of the last section of j.
		

Crossrefs

Rows sums give A036042, n>=1.
Other versions are A026792, A211992, A211993. See also A211983, A211984, A211989, A211999. Spiral arrangements are A211985-A211988, A211995-A211998.

A340031 Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of A000041(m-1) copies of the j-th row of triangle A127093, where j = n - m + 1 and 1 <= m <= n.

Original entry on oeis.org

1, 1, 2, 1, 1, 0, 3, 1, 2, 1, 1, 1, 2, 0, 4, 1, 0, 3, 1, 2, 1, 2, 1, 1, 1, 1, 0, 0, 0, 5, 1, 2, 0, 4, 1, 0, 3, 1, 0, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 5, 1, 2, 0, 4, 1, 2, 0, 4, 1, 0, 3, 1, 0, 3, 1, 0, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Dec 26 2020

Keywords

Comments

Another version of A338156 which is the main sequence with further information about the correspondence divisor/part.

Examples

			Triangle begins:
[1];
[1,2],      [1];
[1,0,3],    [1,2],    [1],    [1];
[1,2,0,4],  [1,0,3],  [1,2],  [1,2],  [1],  [1],  [1];
[1,0,0,0,5],[1,2,0,4],[1,0,3],[1,0,3],[1,2],[1,2],[1,2],[1],[1],[1],[1],[1];
[...
Written as an irregular tetrahedron the first five slices are:
[1],
-------
[1, 2],
[1],
----------
[1, 0, 3],
[1, 2],
[1],
[1];
-------------
[1, 2, 0, 4],
[1, 0, 3],
[1, 2],
[1, 2],
[1],
[1],
[1];
----------------
[1, 0, 0, 0, 5],
[1, 2, 0, 4],
[1, 0, 3],
[1, 0, 3],
[1, 2],
[1, 2],
[1, 2],
[1],
[1],
[1],
[1],
[1];
.
The following table formed by three zones shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n |         |  1  |   2   |    3    |     4     |      5      |
|---|---------|-----|-------|---------|-----------|-------------|
| P |         |     |       |         |           |             |
| A |         |     |       |         |           |             |
| R |         |     |       |         |           |             |
| T |         |     |       |         |           |  5          |
| I |         |     |       |         |           |  3 2        |
| T |         |     |       |         |  4        |  4 1        |
| I |         |     |       |         |  2 2      |  2 2 1      |
| O |         |     |       |  3      |  3 1      |  3 1 1      |
| N |         |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
| S |         |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
| L |         |  |  |  |/|  |  |/|/|  |  |/|/|/|  |  |/|/|/|/|  |
| I | A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
| N |         |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
| K | A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
|   |         |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
|   | A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
|   | A127093 |  1  |  1 2  |  1 0 3  |  1 2 0 4  |  1 0 0 0 5  |
|   |---------|-----|-------|---------|-----------|-------------|
|   | A127093 |     |  1    |  1 2    |  1 0 3    |  1 2 0 4    |
|   |---------|-----|-------|---------|-----------|-------------|
| D | A127093 |     |       |  1      |  1 2      |  1 0 3      |
| I | A127093 |     |       |  1      |  1 2      |  1 0 3      |
| V |---------|-----|-------|---------|-----------|-------------|
| I | A127093 |     |       |         |  1        |  1 2        |
| S | A127093 |     |       |         |  1        |  1 2        |
| O | A127093 |     |       |         |  1        |  1 2        |
| R |---------|-----|-------|---------|-----------|-------------|
| S | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|   | A127093 |     |       |         |           |  1          |
|---|---------|-----|-------|---------|-----------|-------------|
.
The table is essentially the same table of A338156 but here, in the lower zone, every row is A127093 instead of A027750.
.
		

Crossrefs

Programs

  • Mathematica
    A127093row[n_]:=Table[Boole[Divisible[n,k]]k,{k,n}];
    A340031row[n_]:=Flatten[Table[ConstantArray[A127093row[n-m+1],PartitionsP[m-1]],{m,n}]];
    Array[A340031row,7] (* Paolo Xausa, Sep 28 2023 *)

A344089 Flattened tetrangle of reversed strict integer partitions, sorted first by length and then colexicographically.

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 1, 3, 5, 2, 3, 1, 4, 6, 2, 4, 1, 5, 1, 2, 3, 7, 3, 4, 2, 5, 1, 6, 1, 2, 4, 8, 3, 5, 2, 6, 1, 7, 1, 3, 4, 1, 2, 5, 9, 4, 5, 3, 6, 2, 7, 1, 8, 2, 3, 4, 1, 3, 5, 1, 2, 6, 10, 4, 6, 3, 7, 2, 8, 1, 9, 2, 3, 5, 1, 4, 5, 1, 3, 6, 1, 2, 7, 1, 2, 3, 4
Offset: 0

Views

Author

Gus Wiseman, May 12 2021

Keywords

Comments

First differs from the revlex (instead of colex) version for partitions of 12.
The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (3)(12)
  4: (4)(13)
  5: (5)(23)(14)
  6: (6)(24)(15)(123)
  7: (7)(34)(25)(16)(124)
  8: (8)(35)(26)(17)(134)(125)
  9: (9)(45)(36)(27)(18)(234)(135)(126)
		

Crossrefs

Positions of first appearances are A015724 plus one.
Taking lex instead of colex gives A026793 (non-reversed: A118457).
Triangle sums are A066189.
Reversing all partitions gives A344090.
The non-strict version is A344091.
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.

Programs

  • Mathematica
    Table[Reverse/@Sort[Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,30}]

A139100 Triangle read by rows: row n lists all partitions of n in the order produced by the shell model of partitions A138151.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 5, 3, 2, 4, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 4, 2, 3, 3, 2, 2, 2, 5, 1, 3, 2, 1, 4, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 5, 2, 4, 3, 3, 2, 2, 6, 1, 4, 2, 1, 3, 3, 1, 2, 2, 2, 1, 5, 1, 1, 3, 2, 1, 1, 4
Offset: 1

Views

Author

Omar E. Pol, Apr 15 2008

Keywords

Comments

See the integrated diagram of partitions in the entry A138138.
See A138151 for more information.
First 43 members = A026792.

Examples

			Triangle begins:
{(1)}
{(2), (1, 1)}
{(3), (2, 1), (1, 1, 1)}
{(4), (2, 2), (3, 1), (2, 1, 1), (1, 1, 1, 1)}
{(5), (3, 2), (4, 1), (2, 2, 1), (3, 1, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)}
		

Crossrefs

Programs

  • Mathematica
    Table[If[n == 1, ConstantArray[{1}, i - n + 1],
       Map[(Join[#, ConstantArray[{1}, i - n]]) &,
        Cases[IntegerPartitions[n], x_ /; Last[x] != 1]]], {i, 7}, {n, i, 1, -1}]  // Flatten(* Robert Price, May 28 2020 *)
Previous Showing 21-30 of 44 results. Next