cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A339351 Irregular triangle read by rows in which row n lists the compositions (ordered partitions) of n into distinct parts in lexicographic order.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 3, 1, 3, 3, 1, 4, 1, 4, 2, 3, 3, 2, 4, 1, 5, 1, 2, 3, 1, 3, 2, 1, 5, 2, 1, 3, 2, 3, 1, 2, 4, 3, 1, 2, 3, 2, 1, 4, 2, 5, 1, 6, 1, 2, 4, 1, 4, 2, 1, 6, 2, 1, 4, 2, 4, 1, 2, 5, 3, 4, 4, 1, 2, 4, 2, 1, 4, 3, 5, 2, 6, 1, 7, 1, 2, 5, 1, 3, 4, 1, 4, 3, 1, 5, 2, 1, 7, 2, 1, 5, 2, 5, 1, 2, 6, 3, 1, 4, 3, 4, 1, 3, 5, 4, 1, 3, 4, 3, 1, 5, 1, 2, 5, 2, 1, 5, 3, 6, 2, 7, 1, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 01 2020

Keywords

Examples

			Triangle begins:
[1],
[2],
[1, 2], [2, 1], [3],
[1, 3], [3, 1], [4],
[1, 4], [2, 3], [3, 2], [4, 1], [5],
...
		

Crossrefs

Cf. A026793, A066099, A097910 (row lengths), A118457, A228369, A246688, A304797 (row sums), A339178.

Programs

  • Mathematica
    Table[Sort[Join @@ Permutations /@ Select[IntegerPartitions[n], UnsameQ @@ # &], OrderedQ[PadRight[{#1, #2}]] &], {n, 8}] // Flatten

A344091 Flattened tetrangle of all finite multisets of positive integers sorted first by sum, then by length, then colexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 5, 2, 3, 1, 4, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 3, 3, 2, 4, 1, 5, 2, 2, 2, 1, 2, 3, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 12 2021

Keywords

Comments

First differs from A334302 for partitions of 9.
The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)(11)
  3: (3)(12)(111)
  4: (4)(22)(13)(112)(1111)
  5: (5)(23)(14)(122)(113)(1112)(11111)
  6: (6)(33)(24)(15)(222)(123)(114)(1122)(1113)(11112)(111111)
		

Crossrefs

The version for lex instead of colex is A036036.
Starting with reversed partitions gives A036037.
Ignoring length gives A211992 (reversed: A080576).
Same as A334301 with partitions reversed.
The version for revlex instead of colex is A334302.
The Heinz numbers of these partitions are A334433.
The strict case is A344089.
A026791 reads off lexicographically ordered reversed partitions.
A080577 reads off reverse-lexicographically ordered partitions.
A112798 reads off reversed partitions by Heinz number.
A193073 reads off lexicographically ordered partitions.
A296150 reads off partitions by Heinz number.

Programs

  • Mathematica
    Table[Reverse/@Sort[IntegerPartitions[n]],{n,0,9}]

A118458 Lengths of partitions into distinct parts in Abramowitz and Stegun order.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 3, 1, 2, 2, 2, 3, 3, 1, 2, 2, 2, 3, 2, 3, 3, 1, 2, 2, 2, 3, 2, 3, 3, 3, 4, 1, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 4, 1, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4
Offset: 0

Views

Author

Keywords

Examples

			The triangle starts in row n=0 as:
0;
1;
1;
1,2;
1,2;
1,2,2;
1,2,2,3;
The 6th row is 1 (length of 6), 2 (length of 1+5), 2 (length of 2+4), and 3 (length of 1+2+3).
		

Crossrefs

A344084 Concatenated list of all finite nonempty sets of positive integers sorted first by maximum, then by length, and finally lexicographically.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 3, 4, 1, 4, 2, 4, 3, 4, 1, 2, 4, 1, 3, 4, 2, 3, 4, 1, 2, 3, 4, 5, 1, 5, 2, 5, 3, 5, 4, 5, 1, 2, 5, 1, 3, 5, 1, 4, 5, 2, 3, 5, 2, 4, 5, 3, 4, 5, 1, 2, 3, 5, 1, 2, 4, 5, 1, 3, 4, 5, 2, 3, 4, 5, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Gus Wiseman, May 11 2021

Keywords

Examples

			The sets are the columns below:
  1 2 1 3 1 2 1 4 1 2 3 1 1 2 1 5 1 2 3 4 1 1 1 2 2 3 1
      2   3 3 2   4 4 4 2 3 3 2   5 5 5 5 2 3 4 3 4 4 2
              3         4 4 4 3           5 5 5 5 5 5 3
                              4                       5
As a tetrangle, the first four triangles are:
  {1}
  {2},{1,2}
  {3},{1,3},{2,3},{1,2,3}
  {4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}
		

Crossrefs

Triangle lengths are A000079.
Triangle sums are A001793.
Positions of first appearances are A005183.
Set maxima are A070939.
Set lengths are A124736.

Programs

  • Mathematica
    SortBy[Rest[Subsets[Range[5]]],Last]

A339178 Irregular triangle read by rows in which row n lists the compositions (ordered partitions) of n into distinct parts in reverse lexicographic order.

Original entry on oeis.org

1, 2, 3, 2, 1, 1, 2, 4, 3, 1, 1, 3, 5, 4, 1, 3, 2, 2, 3, 1, 4, 6, 5, 1, 4, 2, 3, 2, 1, 3, 1, 2, 2, 4, 2, 3, 1, 2, 1, 3, 1, 5, 1, 3, 2, 1, 2, 3, 7, 6, 1, 5, 2, 4, 3, 4, 2, 1, 4, 1, 2, 3, 4, 2, 5, 2, 4, 1, 2, 1, 4, 1, 6, 1, 4, 2, 1, 2, 4, 8, 7, 1, 6, 2, 5, 3, 5, 2, 1, 5, 1, 2, 4, 3, 1, 4, 1, 3, 3, 5, 3, 4, 1, 3, 1, 4, 2, 6, 2, 5, 1, 2, 1, 5, 1, 7, 1, 5, 2, 1, 4, 3, 1, 3, 4, 1, 2, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2020

Keywords

Examples

			Triangle begins:
[1],
[2],
[3], [2, 1], [1, 2],
[4], [3, 1], [1, 3],
[5], [4, 1], [3, 2], [2, 3], [1, 4],
...
		

Crossrefs

Cf. A026793, A066099, A097910 (row lengths), A118457, A228369, A246688, A304797 (row sums).

Programs

  • Mathematica
    Table[Sort[Join @@ Permutations /@ Select[IntegerPartitions[n], UnsameQ @@ # &], OrderedQ[PadRight[{#2, #1}]] &], {n, 8}] // Flatten

A344092 Flattened tetrangle of strict integer partitions, sorted first by sum, then by length, and finally reverse-lexicographically.

Original entry on oeis.org

1, 2, 3, 2, 1, 4, 3, 1, 5, 4, 1, 3, 2, 6, 5, 1, 4, 2, 3, 2, 1, 7, 6, 1, 5, 2, 4, 3, 4, 2, 1, 8, 7, 1, 6, 2, 5, 3, 5, 2, 1, 4, 3, 1, 9, 8, 1, 7, 2, 6, 3, 5, 4, 6, 2, 1, 5, 3, 1, 4, 3, 2, 10, 9, 1, 8, 2, 7, 3, 6, 4, 7, 2, 1, 6, 3, 1, 5, 4, 1, 5, 3, 2, 4, 3, 2, 1
Offset: 0

Views

Author

Gus Wiseman, May 14 2021

Keywords

Comments

First differs from A118457 at a(53) = 4, A118457(53) = 2.
The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
   0: ()
   1: (1)
   2: (2)
   3: (3)(21)
   4: (4)(31)
   5: (5)(41)(32)
   6: (6)(51)(42)(321)
   7: (7)(61)(52)(43)(421)
   8: (8)(71)(62)(53)(521)(431)
   9: (9)(81)(72)(63)(54)(621)(531)(432)
		

Crossrefs

Same as A026793 with rows reversed.
Ignoring length gives A118457.
The non-strict version is A334439 (reversed: A036036/A334302).
The version for lex instead of revlex is A344090.
A026791 reads off lexicographically ordered reversed partitions.
A080577 reads off reverse-lexicographically ordered partitions.
A112798 reads off reversed partitions by Heinz number.
A193073 reads off lexicographically ordered partitions.
A296150 reads off partitions by Heinz number.

Programs

  • Mathematica
    revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]
    				

A379756 a(n) is the number of subsets of S(n) that sum to A023196(n), where S(n) is the set of the proper divisors (or aliquot parts) of A023196(n).

Original entry on oeis.org

1, 2, 2, 1, 5, 1, 3, 7, 3, 2, 10, 3, 2, 34, 2, 0, 31, 1, 6, 25, 1, 23, 21, 2, 1, 1, 20, 4, 1, 279, 13, 15, 1, 15, 116, 9, 11, 12, 4, 197, 1, 2, 755, 1, 42, 2, 9, 12, 6, 2, 151, 169, 7, 1, 9, 8, 6, 2190, 1, 516, 1, 6, 121, 130, 1, 6, 119, 1, 469, 4, 446, 1, 4, 6
Offset: 1

Views

Author

Felix Huber, Feb 07 2025

Keywords

Comments

This sequence is A065205 without the terms A065205(k) where k > sigma(k)/2.

Examples

			a(8) = 7 because exactly the 7 subsets {6, 12, 18}, {3, 6, 9, 18}, {2, 4, 12, 18}, {2, 3, 4, 9, 18}, {2, 3, 4, 6, 9, 12}, {1, 2, 6, 9, 18}, {1, 2, 3, 12, 18} of S(8) = {1, 2, 3, 4, 6, 9, 12, 18} sum to A023196(8) = 36.
a(16) = 0 because no subset of S(16) = {1, 2, 5, 7, 10, 14, 35} sums to A023196(16) = 70 (weird number).
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    A023196:=proc(n)
        local a;
        option remember;
        if n=1 then
            6
        else
            for a from procname(n-1)+1 do
                if sigma(a)>=2*a then
                    return a
                fi
            od
        fi;
    end proc;
    A379756:=proc(n)
        local b,d,l;
        d:=sigma(A023196(n))-2*A023196(n);
        l:= [select(x->x<=d,Divisors(A023196(n)))[]];
        b:= proc(m,i)
            option remember;
            `if`(m=0,1,`if`(i<1,0,b(m,i-1)+`if`(l[i]>m,0,b(m-l[i],i-1))))
        end proc;
        forget(b);
        b(d,nops(l))
    end proc;
    seq(A379756(n),n=1..74);

Formula

Iff a(k) = 0, A023196(k) is a weird number (A006037).
Iff a(k) = 1, A023196(k) is a term of A064771.
a(A000396(k)) = 1 (A000396: perfect numbers).
Previous Showing 11-17 of 17 results.